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Introduction

The En-ROADS Climate Solutions Simulator is a climate simulation tool for understanding how we can achieve

our climate goals through changes in energy, land use, consumption, agriculture, and other policies.
En-ROADS is

a globally aggregated model of energy, economic, land use, and climate systems.
The level of aggregation and

several simplifying assumptions allow the model to return results in seconds and be accessible to policy makers

and general audiences.
En-ROADS is a simple climate model and complements the other, more disaggregated

models addressing similar questions, such as integrated assessment models or general circulation climate

models.
Those larger disaggregated models are used for calibrating results in En-ROADS.
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Figure 1.1  En-ROADS Model Structure

En-ROADS is being developed by Climate Interactive, Ventana Systems, UML Climate Change Initiative, and MIT

Sloan.

This En-ROADS Technical Reference documents the En-ROADS model structure, equations, assumptions, and

data sources.
In addition, there is an En-ROADS User Guide more suited to general audiences.
For a list of

articles about the simulators see our Peer-reviewed Research page.
Climate Interactive also provides extensive

training materials for En-ROADS at learn.climateinteractive.org.

Please visit support.climateinteractive.org for additional inquiries and support.

http://www.climateinteractive.org/
http://www.ventanasystems.com/
http://www.uml.edu/Research/Climate-Change/
http://mitsloan.mit.edu/
https://docs.climateinteractive.org/projects/en-roads/en/latest/index.html
https://www.climateinteractive.org/peer-reviewed-research/
https://learn.climateinteractive.org/
https://support.climateinteractive.org/


Purpose and Intended Use

En-ROADS is designed to be used interactively with groups as a basis for scientifically rigorous conversations

about addressing climate change.
It is not intended as a tool for prediction or projections, nor does it cover every

impact of the economics, energy use, or land use decisions.
It is suitable for decision-makers in government,

business, and civil society; or for anyone who is curious about the choices of our world.

En-ROADS is also useful for learning about the dynamic behavior of systems in general by highlighting those

impacting the climate:

The differences between high and lower leverage actions

The response to policies based on incentives, supply-side and demand-side interventions, mandates and

technology

Delays in the system, including capital turnover, momentum in the carbon cycle, social and technological

transitions, and more

Effective and conflicting combination of actions

The scale of required action, and the unintended consequences of some actions

The feedback between climate change and economic growth

En-ROADS allows users to adjust many of the assumptions underlying these dynamics.



Model Structure

En-ROADS is a system dynamics model.
It consists of a set of ordinary differential equations in time.
Variables

calculated by integration are called “stocks” (also called “levels”); components of the rate of change of a stock

are called “flows”; variables used for intermediate steps or calculating other values include auxiliary, constant,

data, and initial variables.

Equations represent both physical processes and human decisions.
There is no assumption of equilibrium or

optimal decision making.
The model represents the climate, environment, economy, and energy systems at the

global level of aggregation and at the system-wide level of analysis.

En-ROADS is constructed using Vensim modeling software from Ventana Systems, and transformed into an

online simulation via the SD Everywhere converter built by Climate Interactive and Todd Fincannon.

En-ROADS is calibrated to an extensive set of historical data, and its endogenous behavior is grounded in and

made consistent with other models, in particular the Integrated Assessment Models used by the

Intergovernmental Panel on Climate Change (IPCC).

Simulation Method

The differential equations making up En-ROADS are non-linear and have no general closed form solution.
Instead

they are estimated numerically using the Euler method.
At each time step (∆t), auxiliary and flow variables are

calculated from previous values of stocks, along with constants and data as needed.
Each stock is then

computed by adding its previous value to the product of ∆t times the sum of all its flows.
A sufficiently small time

step is required for good approximation - a value of one eighth (0.125) year is appropriate in En-ROADS given the

characteristic times and delays in the system as modeled.

En-ROADS starts from initial values in the year 1990 and runs endogenously through 2100.
The value of each

variable is stored every year. Aside from a small number of exogenous values, the model runs free - calibrated to

external data but not driven by data.



Causal Structure

At the highest level, En-ROADS calculates the concentration of each well-mixed greenhouse gas (CO , CH , N O,

PFCs, SF , and HFCs), in the atmosphere, and the resulting climate change and other impacts.
Greenhouse gas

concentrations of each gas depend on its global cycle, driven by natural emissions and by anthropogenic

emissions from energy, industry, and land use.
Energy and industry emissions depend on total consumption

(population times consumption per person), energy intensity of consumption, and emission intensity of energy

and industry.
Agriculture emissions and the land needed for farming depend on population and diets.
The impacts

of climate change create feedbacks that reduce consumption (by slowing economic growth), increase the land

needed for agriculture (by lowering yield), and alter the biosphere.
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Figure 2.1  En-ROADS Model Structure
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Scope & Detail

The model represents key processes in the energy system for a single, global region.
Distinctions among regions

are obviously important in the real world, but would considerably complicate the accounting framework of the

model, particularly by introducing trade issues, and dilute the impact of any intervention, rendering it less useful

for rapid scenario experimentation.

En-ROADS is dynamic, showing behavior over time, and does not find “optimal” results.
There are a small number

of exogenous inputs selected by the user.
All other values are calculated endogenously using assumptions that

can also be adjusted by the user.

Exogenous (user inputs):

Population

Base GDP growth

Technology breakthrough

Policy choices

Endogenous:

Energy source choice

Energy carrier choice

Energy intensity

Energy variable and capital costs

Price, capacity, and utilization of fuels

Price of electricity and capacity and utilization of each source

Price of hydrogen and capacity and utilization of each source

Energy technology (learning by doing)

Nonrenewable resource depletion

Renewable resource saturation

Energy Storage

Carbon capture and storage

GHG & climate dynamics

Agriculture and land use

Sea level rise and other climate impacts

GDP adjusted for climate impacts

Excluded:

Inventories

Labor



The energy system is modeled in great detail, including price, technology and other factors that affect the

dynamics of energy and emissions across the full lifecycle for all sources, including potential new technologies.

Figure 2.2  Summary of the energy flows through the system



Organization

En-ROADS is made up of several interconnected submodels which hold the equations.
Model sectors are

functional and may span one or many submodels.
A particular variable is always calculated in only one

submodel, but the results are passed to other submodels, and each variable may participate in many model

sectors.
The submodel listing below describes what sectors each contributes to.
A more detailed description of

equations and dynamics is organized by model sector in the chapters that follow.

En-ROADS.mdl: Collects and organizes model output for testing, includes all sectors.

Constants.mdl: Holds constants used across multiple sectors and submodels, such as unit conversions.

Calibration.mdl: Provides interfaces and data connections for calibrating to historical data and comparing to

other model projections under different scenarios.

Population.mdl: User selected scenarios for population, part of the demand sector.

GDP.mdl: User selected base economic growth, and slowed growth due to feedbacks, part of the demand

sector.

EnergyDemand.mdl: Desire for and choice between types of capital, and the use of capital. Part of the

demand and market clearing and utilization sectors.

EnergySupply.mdl: Investment, construction, use, and retirement of capacity in the energy sector, including

fuel extraction and delivery and electricity generation. Part of the supply and market clearing and utilization

sectors.

EnergyCostsRevenues.mdl: Calculates cost dynamics of energy sources for learning, technology, and

policies such as taxes and subsidies. Some cross-cutting energy technologies, such as efficiency and

energy storage. Parts of demand, supply, and market clearing and utilization sectors.

EnergyPricing.mdl: Adjusts prices to balance supply and demand, Part of the market clearing and utilization

sector.

Emissions.mdl: Calculates emissions from energy, end-use capital, and waste; and sums, accumulates and

categorizes emissions. Emissions include CO , CH , N O, and F-gases.

CDR.mdl: Calculates the amount of carbon dioxide removal (CDR), afforestation, and carbon capture and

storage (CCS) indicated by policy and price signals.

BioenergyAgriculture.mdl: Calculates food needs, land and CH  and N O emissions for agriculture, and the

costs and land needed for bioenergy materials. Parts of Land Use, Land Use Change, and Forestry;

Terrestrial Biosphere; Emissions; Demand and Supply sectors.

TerrestrialBiosphere.mdl: Tracks the land area, carbon content in biomass and soil, and the transfers of

carbon between air, biomass, and soil for each category of land use.

CarbonCycle.mdl: Sums the carbon transfers from TerrestrialBiosphere.mdl, and tracks the stocks and

flows of carbon and other greenhouse gases between emissions, removals, atmosphere, and oceans.

Climate.mdl: Calculates radiative forcing, heat flows, and temperature changes in the atmosphere and

oceans.

ClimateImpacts.mdl: Calculates those impacts that depend directly on temperature, or use temperature

change as a proxy for climate change impacts.

PM25.mdl: Calculates pollution other than greenhouse gases produced from burning fuels.

SeaLevelRise.mdl: Tracks thermal expansion in the oceans, water flows, and ice melt along with the

acidification effects of dissolved CO .

In the model structure diagrams in the following chapters, there are four types of elements:

1. Variables with a box represent stocks, determined by integration.

2. Variables without a box are auxiliary variables.

3. Simple arrows indicate a causal relationship, one variable is a function of the other.
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4. Pipes represent flows - the elements of the rate of change of stocks - shown flowing into, out of, and

between stocks.



Demand

Population, GDP, and Capital

The demand sector defines the global energy demand for road and rail transport, air and water transport,

residential and commercial (buildings), and industry end uses, all of which may be met by direct use fuel,

electric, and hydrogen carriers.
The model determines the energy demand according to the stock of energy-

consuming capital and its associated energy requirements.

Capital grows according to gross world product (GWP, but referred to in this document as GDP) as calculated by

specified population scenarios and GDP per capita rates.
GDP exogenously uses data reported by the World

Development Indicators (2024) for each region.
Projections assume GDP per capita growth rates converge from

what they are in the period leading up to the last historical year and converge to 1.5% through 2100.
Population

uses the UN historical data through 2021, followed by their projections for different fertility scenarios.
By default,

En-ROADS assumes the medium fertility projections, but the model can vary continuously between the lower and

upper 95% confidence intervals.

National Aggregation

En-ROADS calculates actions and outcomes for the entire globe as a single region, with the exception of

population and GDP, which are calculated for seven smaller regions.
These are the same regions used in C-

ROADS.



Table 3.1  Regional Aggregation

Regions Individual Nations

United

States (US)
United States (US)

European

Union (EU)

Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,

Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxemburg, Malta, the Netherlands,

Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden

Other

Developed

Countries

Albania, Andorra, Armenia, Australia, Azerbaijan, Belarus, Bosnia and Herzegovina, Canada,

Faeroe Islands, Fiji, Georgia, Gibraltar, Greenland, Holy See, Iceland, Japan, Kazakhstan,

Kyrgyzstan, Macedonia, Moldova, Montenegro, New Zealand, Norway, Russian Federation,

Serbia, South Korea, Switzerland, Tajikistan, Turkmenistan, Ukraine, United Kingdom,

Uzbekistan

China China

India India

Other

Developing

A

Countries

Brazil, Indonesia, Hong Kong, Malaysia, Mexico, Myanmar, Pakistan, Philippines, Singapore,

South Africa, Taiwan, Thailand

Other

Developing

B

Countries

Afghanistan, Algeria, American Samoa, Angola, Anguilla, Antigua and Barbuda, Argentina,

Aruba, Bahamas, Bahrain, Bangladesh, Barbados, Belize, Benin, Bermuda, Bhutan, Bolivia,

Botswana, British Virgin Islands, Brunei Darussalam, Burkina Faso, Burundi, Cabo Verde,

Cambodia, Cameroon, Central African Republic, Chad, Chile, Colombia, Comoros, Congo, Cook

Islands, Costa Rica, Côte d'Ivoire, Croatia, Cuba, Democratic People's Republic of Korea,

Democratic Republic of the Congo, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El

Salvador, Equatorial Guinea, Eritrea, Ethiopia, Falkland Islands (Malvinas), Federated States of

Micronesia, French Guiana, French Polynesia, Gabon, Gambia, Germany, Ghana, Grenada,

Guatemala, Guinea, Guinea Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Iran, Iraq,

Israel, Jamaica, Jordan, Kenya, Kiribati, Kuwait, Lao People's Democratic Republic, Lebanon,

Lesotho, Liberia, Libya, Macao, Madagascar, Malawi, Maldives, Mali, Marshall Islands,

Mauritania, Mauritius, Mayotte, Mongolia, Montserrat, Morocco, Mozambique, Namibia, Nepal,

New Caledonia, Nicaragua, Niger, Nigeria, Niue, Oman, Palau, Panama, Papua New Guinea,

Paraguay, Peru, Qatar, Réunion, Rwanda, Saint Helena, Saint Lucia, Samoa, São Tomé and

Príncipe, Saudi Arabia, Senegal, Seychelles, Sierra Leone, Slovakia, Slovenia, Solomon Islands,

Somalia, Sri Lanka, Sudan, Suriname, Swaziland, Syrian Arab Republic, Timor-Leste, Togo,

Tokelau, Tonga, Trinidad and Tobago, Tunisia, Turkey, Turks and Caicos Islands, Tuvalu,

Uganda, United Arab Emirates, United Republic of Tanzania, Uruguay, Uzbekistan, Vanuatu,

Venezuela, Vietnam, Wallis and Futuna Islands, West Bank and Gaza, Western Sahara, Yemen,

Zambia, Zimbabwe



Notes:

Other Developed Countries includes the Annex I countries within the UNFCCC process; the US and EU are

also in the Annex I.

Other Developing A Countries consists of the large developing countries with rising emissions.

Other Developing B Countries consists of smaller developing countries, including the least developed

countries and the small island states.

Capital

The capital-output ratio relates the capital demand to global GDP.
This ratio is assumed to be fixed except for that

it increases with the wealth gap closure, i.e., the closure of the gap between the average GDP per capita of

developing countries and the initial average of developed GDP per capita.

Damage functions relating to GDP impacts from temperature change are described in detail in Damage to GDP.

Energy requirements are embodied in the capital stock at the time of investment, which introduces a lag between

the energy intensity of new capital and the average energy intensity of the capital stock.

The energy intensity of new capital is governed by a response to the total cost of ownership of each carrier for

each end use and an exogenous user-specified technology trend.
For each end use and carrier, two price effects,

one based on energy costs and the other based on non-energy costs, also affect its energy intensity of new

capital.
Each price effect is formulated according to a distinct constant elasticity, such that as the cost relative to

the reference increases, the energy intensity of that end use and carrier decreases.
Likewise, as the cost relative

to the reference decreases, the energy intensity of that end use and carrier increases.

The demand sector includes energy intensity of new and average energy consuming capital, which is

disaggregated into three vintages, with energy requirements of each vintage, accounting for aging, early

discarding and retiring, and retrofitting.
Capital and energy requirements of that capital are disaggregated by end

use (residential & commercial, industry, road and rail transport, and air and water), as well as by carrier.
The

model carefully tracks final and primary energy demand, where the former is the energy consumed by the end

use capital, and the latter is the energy needed to be generated to meet that demand accounting for thermal

efficiency that is less than 100% and other losses.

Carrier Choice

Energy is delivered to end use capital via six potential carriers; there are four direct use carriers, an electric

carrier, and a hydrogen carrier.
Each of the direct use fuel carriers matches 1:1 with each of the fuels, i.e., coal,

oil, gas, and biomass.

Shares of each carrier are allocated on the basis of the relative attractiveness of options according to a logit-type

choice function, e.g.:

Share[Carrier] =
Attractiveness[Carrier]

∑Attractiveness[Carrier]

file:///home/runner/work/en-roads-app/en-roads-app/model/ref-guide/public/en/latest/damage.html


Attractiveness is an exponential function of cost, complementary assets (for all uses by the hydrogen carrier and

transport uses by all other carriers), and other factors including phase-out policies, technical feasibility, and other

effects.
Cost attractiveness is determined according to the weighted average of attractiveness based on upfront

capital costs and that based on the total cost of ownership (TCO), i.e., sticker price plus annual operation and

maintenance costs plus energy costs.
The weight reflects the value of how the buyers' attention is distributed

between the sticker price and the TCO while making purchasing decisions and is specified for each end use.

Costs associated with the market price of energy are driven by the energy dynamics (e.g., extracted fuel

commodity cycle, market clearing algorithms).
Costs associated with the end use capital may be reduced by

learning from end use experience, and for the electric carrier, adjusted with subsidies.

Complementary assets (CAs) reflect the availability of infrastructure to support the carrier.
For nonhydrogen

carriers, the effect applies only to the road and rail transport end use, reflecting fueling points/charging stations.

For the hydrogen carrier, the effect applies to all potential end uses; the fueling infrastructure to meet future

hydrogen demand is only available if policies support its building or, for air and water transport only, if direct use

of fuels is banned.
The installation of CAs is a function of the embodied carrier demand and, for the electric and

hydrogen carriers, a policy to increase that.
However, it is also constrained by a third order delay of the installation

capacity.
CAs have a normal lifetime but can also be retired early if the level exceeds the carrier demand.
The

level of CAs relative to that which is needed factors into the attractiveness of each carrier.
Coal is assumed to

have adequate availability for the relatively small amount of demand, notably for trains.
The bio carrier uses the

complementary assets of the oil carrier.

Fuel phase-out mandates also affect attractiveness, as described in Drivers of Cost of Supply.

The logit-determined shares are also subject to policies of phasing out fuel-powered capital, thereby deploying

electric or hydrogen using new capital.
These policies are phased in over time.
For road and rail transport, which

reflects approximately 85% of all transport capital, fuel phase-outs result in electrification because hydrogen

cannot compete cost effectively for this sector.
Conversely, fuel phase-outs for air and water result in the

deployment of hydrogen because electricity cannot compete cost effectively for this sector.

Energy Intensity of New Capital

In the demand sector energy requirements are embodied separately for each end use and carrier.
Energy intensity

of each new unit of capital drives the embodied long-term requirements.
Technological improvements and price

of energy affect the energy intensity of new capital.
The technological effect defaults to the historically observed

improvements, assuming those persist into the future.
However, the user may change those rates of

improvement.
Price effects for each end use and carrier are determined according to the long-term demand

elasticities to the price of energy and to the non-energy costs of capital.
The indicated price effect for each is

delayed over time.
There is also a fraction of the residential and commercial sector that is by definition electric,

e.g., lighting and electronics.



Long Term Energy Requirements

The energy demanding capital that is installed is a function of the desired capital and that which is lost through

discarding and retiring.
The long term energy requirements are a function of the energy intensity of the capital

that is installed and tracked through the capital lifetime through each vintage.
Retrofitting for each end use also

occurs, with the retrofits at the capital share and intensity of new energy.

Model Structure

Figure 3.1  Elements of Carrier Attractiveness



Figure 3.2  Carrier Choice



Supply

Supply of Fuels, Electricity Generation, and Hydrogen Production

There are three main supply chains, each subscripted accordingly, to capture the stock and flow of supply

capacity.

1. Fuels (coal, oil, gas, and biofuel);

2. Electricity generation from each of the electric paths (coal, oil, gas, biofuel, nuclear, hydro, wind, solar,

geothermal, other renewables, and new zero-carbon); and

3. Hydrogen production from each of the hydrogen paths (electricity from the grid; dedicated renewables;

dedicated nuclear; gas; coal; and biomass.

There are two distinct supply chains for hydrogen, one for energy and storage for variable renewable

energy (VRE), and the other for feedstocks because the options for each differ as explained in

Hydrogen Supply Choice

There is an additional supply chain to capture the stock and flow of electricity generation capacity by

dedicated renewables and dedicated nuclear to meet the hydrogen capacity demands.

Table 4.1  Carriers

Carriers Sources Used

Coal Carrier Coal

Oil Carrier Oil

Gas Carrier Gas

Bio Carrier Bio

Electric Carrier Elec Paths

Hydrogen Carrier Hydrogen Paths



The model assumes that each fuel is available only for its respective use if used as direct use fuel, i.e.,

nonelectric and nonhydrogen.

Each fuel is available for direct use and electricity generation; only coal, gas, and bio are available for hydrogen

production.
The electric only paths are mapped to the primary source, where the renewable types are aggregated

to Primary Renewables.
The hydrogen paths include electrolysis via the grid (Elec H), from dedicated renewables

(Renew H), and dedicated nuclear paths (Nuclear H); steam methane reformation (SMR) via natural gas (Gas H);

and gasification from coal (Coal H) and biomass (Bio H).

Table 4.2  Primary Energy Sources, Electric Paths, and Hydrogen Paths

Primary Energy Sources Primary Fuels Elec Paths Hydrogen Paths

Primary Coal PCoal ECoal Coal H

Primary Oil POil EOil

Primary Gas PGas EGas Gas H

Primary Bio PBio EBio Bio H

Primary Nuclear Nuclear Nuclear H

Primary Hydro Hydro

Primary Renewables

Wind

Solar 

Geothermal 

Other Renewables

Renew H

Primary New New

Hydrogen paths are classified by technology and color according to their source.

Table 4.3  Hydrogen Technologies and Colors



Source Subscript Technology Color

Coal or biomass Coal H, Bio H Gasification Brown

Gas Gas H Steam Methane Reforming (SMR) Gray

CCS-enabled coal, gas, or

biomass

Coal H, Gas H, Bio

H

Gasification (coal and biomass), SMR

(gas)
Blue

Electric grid Elec H Electrolysis Yellow

Dedicated nuclear Nuclear H Electrolysis Pink

Dedicated renewables Renew H Electrolysis Green



For each fuel, the capacity, utilization, and costs affect its market price; markup values for each end use yield the

market price to use the fuel directly.
Markup values to use each fuel to generate electricity or produce hydrogen

yield the fuel variable costs for each carrier.
Market Clearing and Utilization details the market clearing and

utilization of fuels, electricity sources, and hydrogen sources.

For each of these phases, the capacity represents the installed base of usable capital.
It depreciates via a

constant fractional rate, without age vintaging of the stock.
The profitability, however, affects the rate of

depreciation.
Capacity must go through the development phase and then constructed before it can be used,

introducing a delay between initiating and completing the acquisition of new capacity.
The amount of capacity

that is planned for construction accounts for the total capacity needed to meet the energy demand, including

transmission and delivery losses, plus a reserve margin and expected growth of energy requirements.

For capacities of fuels, the desired capacity of each depends in part on the centralized effect of expected growth

and normal utilization, as well as on the profitability and current capacity of each fuel.
Any non-cost policies

banning new capacity adjust the resulting desired capacity.
For electric generation, the desired capacity of each

source depends on the demand of electricity and the fraction invested in each source.
For hydrogen production,

the desired capacity of each source is a function of its use, the demand of each use, and the fraction invested

for each use, where the feedbacks on construction costs and times from each use affect each other.

There is an additional supply chain for the dedicated renewables and dedicated nuclear hydrogen paths, driven

by the demand of electricity from these paths to produce hydrogen.
Capacities of renewables and nuclear paths

for electricity generation for the grid and for these dedicated paths affect each other in terms of costs and

supply constraints.

Desired capacities are adjusted by dividing by the capacity factor of each resource, requiring more of each

energy path to be constructed to get the actual desired supply.
The constructed supply is then multiplied by the

capacity factor to yield the actual capacity.
While the Actual Supply Capacity represents the amount of energy

from each path that can be dispatched, the Energy Supply Capacity is the amount of capacity that is constructed.

The rate of capacity completion is constrained by the capacity to do so.
This structure captures supply chain

constraints, for example the fact that if wind turbine orders double overnight, completion of new turbines cannot

also double immediately.
It takes time to acquire labor and machinery and build up other aspects of the

necessary supply chain.
This has two consequences: with increasing pressure to construct capacity, the

effective lead time increases, and the cost of new capacity rises.

Drivers of Cost of Supply

Several factors affect the cost of each supply source, including,

A baseline or reference cost

a learning-by-doing effect from the accumulation of experience in capacity installation

an exogenous user-specified cost reduction from technological breakthroughs achieved through research

and development (R&D)

cost of fuels as determined by the fuel market price and efficiency of fuel use

resource constraints

source subsidies/taxes

storage costs for variable renewables (solar and wind)

soft costs for renewables

emissions cost from carbon pricing



qualifying electricity standards costs and penalties, Qualifying Electricity Standards (QES)

a “pipeline overheating” premium from supply chain constraints on capacity installation

Resource Constraints

The Resource Constraints sector addresses the potential limits to available energy resources and the effects

those limits may have on supply costs.
The resource effect cost is a function of the depletion effect on cost and

the supply curve effect on cost.

The depletion effect is dynamic, with cost increasing as cumulative production grows.
This captures cost

escalation with the depletion of fossil fuels. It is possible to discover unconventional resources, thereby reducing

the depletion effect; however, it is assumed that the unconventional resources have a different carbon intensity,

adjusted by the user.
Biomass is not limited by depletion but rather by the supply constraints of each feedstock,

i.e., wood, crops, and others, which reflects the limit of production of energy from a source from the saturation of

production opportunities.
These resource constraints affect the extraction costs of fuels, resulting in a greater

market price.
In turn, a greater market price of fuels drives up the variable costs to use those fuels for electricity

or hydrogen production.

The supply curve constraint can also affect the cost to produce the electric only paths, i.e., nuclear, hydro,

renewable types, and new zero-carbon; of these sources, the model defaults to only affect hydro and

renewables.
Supply limitations for these paths affect the capital costs, capturing, for example, the escalation in

cost of wind power that occurs as the cheapest sites are exploited first.

Parameters are based on IPCC 2007 and IEA 2022 estimates.

Storage for Renewables

Storage capacity for variable renewable energy (VRE) must meet its demand when the source is not available.

Variable renewables include wind and solar, whereas geothermal and other renewables are more constant in

their generation.
Models of hourly, daily, and seasonal variability of demand and renewable generation determined

the storage coverage, i.e., energy per variable renewable capacity (EJ per EJ/year), and the average power

needed from storage per variable renewable capacity (EJ/year per EJ/year).
Sensitivity analyses of each

category of coverage determined the relationships between these parameters and the share of VRE capacity to

total electric generation capacity.
These analyses also confirmed the effect that round trip efficiency (RTE) has

on the required coverage; it scales 1/RTE such that the lower the RTE to use storage, the higher the maximum

storage capacity for storage required.
The resulting relationship between hours of coverage versus VRE share is

consistent with that found by others, including Solomon et al. (2017), Shaner et al. (2018), and Albertus (2020).

Storage coverage to balance the different time scales of variability is defined in the model by duration.

Hourly storage: up to 12 hours of coverage.

Daily storage: 12-72 hours of coverage.

Seasonal storage: greater than 72 hours of coverage.

Long duration energy storage (LDES)—generally daily and seasonal storage coverage—is increasingly required at

higher shares of variable renewables in the electric grid, and requires a breakthrough cost reduction to enable its

growth.

Besides storage, other demand response technology, long-distance transmission, and behavioral load

management can minimize storage needs but only for short and medium coverage.
Learning and investment

increases the percent effect these options have on the storage requirements.



While the model assumes that storage requirements will not limit utilization, costs of renewables account for

those for storage.
Comparable to the experience and breakthrough effects for energy, storage costs also

decrease with cumulative capacity installation and potential technological breakthroughs.

Storage could be in the form of batteries, compressed air, pumped hydropower, and other more novel options,

including hydrogen.
NREL's Store-FAST: Energy Storage Financial Analysis Scenario Tool, version: 1.2 (2019),

provides the inputs for power and energy costs, including RTE, for several storage options.
The levelized cost of

each type adds the cost of electricity for it, which is the market price of electricity divided by the storage RTE.

Other than hydrogen, these technologies all become limited and/or more costly with longer durations of

coverage.
Cost effective long duration coverage is critical when the share of VRE exceeds approximately 70-80%.

Hydrogen, despite having a much lower RTE, approximately 36%, has the potential to provide more cost effective

long duration coverage than the other technologies.
This is because, although the power costs associated with

hydrogen far exceed those other storage options, the costs to store each hour of energy coverage is far less than

the other options.
Despite that cost effectiveness for long-term coverage, ancillary costs currently associated

with hydrogen storage constrain its use.
A subsidy for green hydrogen reduces these ancillary costs, thereby

allowing it to take advantage of its cost attractiveness for long-term coverage.

Electricity for Storage

In addition to the power and energy costs, each storage option also requires electricity for charging and

discharging.
Electricity exceeding that which is generated from storage, determined from the sum of the average

power needed from storage per variable renewable capacity from the hourly, daily, and seasonal models, is added

to the industrial electric carrier demand.
For example, an RTE of 100% requires no additional electricity; an RTE of

80% requires 0.25 times the power required; and an RTE of 36% requires 1.77 times the power required.
By

default, the electricity all comes from the grid for nonhydrogen storage.
Hydrogen for storage comes

preferentially from the grid and from dedicated renewables.

Hydrogen Leakage

Hydrogen leakage, defaulted at 2%/year, releases hydrogen to the atmosphere.
While there is no direct radiative

forcing from hydrogen, the climate structure accounts for its indirect effects on the radiative forcings of CH , O ,

H O, and aerosols (Sand et al., 2023).

Soft Costs and Subsidies for Renewables

The levelized cost of electricity (LCOE) of renewables, particularly wind and solar energy, have decreased

dramatically since 1990, especially over the past decade.
Two opposing forces have contributed to those

declines with the energy generated by them.
There have been historical subsidies for solar and wind, defined as

a fraction of their direct costs, stimulating their growth.
While the fraction of solar subsidies declined over time

until 2020, that fraction and the fraction for wind is expected to remain constant through 2100 as Baseline

subsidies, comparable to the fossil fuel subsidies embedded in their costs.
However, the user can end them

sooner.
There have also been soft costs, i.e., indirect costs, that have made the investment in these sources less

attractive than direct cost alone would suggest.
It captures the soft costs as an initial level that declines with

experience at a rate determined by a progress ratio.
The values defining these subsidies and soft costs were

estimated from literature and set through optimization to fit historical cost (IRENA, 2020; Lazard, 2021; IEA, 2020)

and energy data (IEA, 2022; BP, 2022).

Sources of LCOE data for renewables are not consistently presented and only available for some years, therefore

requiring conversions and bridging between datasets.
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IRENA: All LCOE results are reported in $2019 USD.
Reported values calculated excluding any financial

support and using a fixed assumption of a real cost of capital of 7.5% in OECD countries and China, and 10%

in the rest of the world, unless explicitly mentioned.
All LCOE calculations exclude the impact of any

financial support.
Converted to $2017.

LAZARD 3.0-15.0:
All LCOE results reported in nominal dollars.
Each analysis assumes 60% debt at 8%

interest rate and 40% equity at 12% cost;
Unless otherwise indicated, the analysis herein does not reflect

decommissioning costs, ongoing maintenance-related capital expenditures or the potential economic

impacts of federal loan guarantees or other subsidies; Lazard’s unsubsidized LCOE analysis indicates

significant historical cost declines for utility-scale renewable energy generation technologies.
Converted to

$2017.

IEA Levelized Costs Data:
Global average LCOEs and auction results for utility-scale PV by commissioning

date.
Last updated 26 Oct 2022.
Data shown = LCOE in $2017.

IEA: Evolution of solar PV module cost by data source, 1970-2020.
Last updated 26 Oct 2022.
While the

LCOE data for solar PV is not readily available before 2009, IEA’s cost per watt of solar PV from IEA 1970-

2020 provides data to estimate the LCOE from 1990.
Using the ratio of annual costs per watt to that in 2010

and applying that ratio to the IRENA solar PV LCOE in 2010 provides an estimate of LCOE from 1990-2019.

Berkeley.
Median 30-Year LCOE without the ITC reported in $2018.
Converted to $2017.

Utility vs distributed solar PV:
There are differences between utility scale and distributed solar PV.
According to

IEA (2022), the fraction of PV that is utility scale grew from 24% to 50% of solar PV between 2010-2016,

remaining at that level thereafter.
Lazard provides utility scale and distributed cost data; accordingly,

comparisons are made to the weighted average of these.
The weights assume the trend of increasing utility

scale relative to distributed increases at a comparable rate to history.

Onshore vs offshore wind:
Likewise, there are differences between onshore and offshore wind.
IRENA used the

weighted average of the onshore fraction of wind, taken from IEA Wind Electricity Report, to get the weighted

average of wind LCOE.
From regional graphs of onshore vs offshore wind, they estimated wind to be 100%

onshore until 2010, when offshore wind starts to present, decreasing down to 95% by 2019.

Instant and Embodied Supply Costs and Efficiencies

The embodied costs of supply are modeled in the Embodied Supply Costs sector.
These costs factor into the

utilization of energy capacity in the Market Clearing and Utilization sector.
Embodied costs represent the actual

physically-imposed costs, which are locked in at the time of capacity investment, i.e., new capacity development.

Variable costs include operation and maintenance (O&M), and fuel costs.
The fuel costs for direct use are the

market price of each fuel marked up by constant specific to the end use and fuel.
The fuel cost for each electric

and hydrogen source requiring fuel is the market price of each fuel, accounting for a markup, divided by the

embodied thermal efficiency of the source; fuel prices for the primary electric paths are 0.
Unit profit, which is the

revenue less the variable costs, may be adjusted by a tax/subsidy and/or carbon tax to the producers of delivered

fuels.

As in the Demand sector, the construction pipeline is explicit but without vintaging of capital as there is in the

demand side; costs are assumed to be well-mixed.
All inputs to this sub-model are determined in other sub-

models except for the Overheating cost sensitivity, which is set at 0.5.
The embodied costs and efficiencies of

supply are locked in at the time new capacity development.

https://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019
https://www.lazard.com/media/sptlfats/lazards-levelized-cost-of-energy-version-150-vf.pdf
https://www.iea.org/data-and-statistics/charts/global-average-lcoes-and-auction-results-for-utility-scale-pv-by-commissioning-date
https://www.iea.org/data-and-statistics/charts/evolution-of-solar-pv-module-cost-by-data-source-1970-2020
https://emp.lbl.gov/utility-scale-solar
https://www.iea.org/reports/solar-pv
https://www.iea.org/reports/wind-electricity


The effects on costs apply to the levelized capital costs.

Electric Supply Choice

As in the Carrier Choice sectors, the fraction of new investment allocated to each of the electric energy sources

is a function of its attractiveness relative to that of the other sources.
Attractiveness synthesizes cost effect and

the effect of a performance standard.

The cost, adjusted by any source subsidies/taxes, drives the cost attractiveness of each electric path relative to

the other electric paths.

The performance standard effect is a function of a specified carbon intensity threshold and the carbon intensity

of each energy source resource, defined in Emissions.
The performance standard creates a soft threshold,

beyond which sources with high emissions intensity (e.g., coal) are greatly diminished in attractiveness and are

effectively eliminated from the investment mix.
The effect of non-cost policies aims to capture any legislation or

rule demanding no new investment in a specified source for a percentage of the global energy needs.

Hydrogen Supply Choice

Comparable to that for the electric carrier, the fraction of new investment allocated to each of the hydrogen

energy sources is a function of its attractiveness relative to that of the other sources.
Attractiveness synthesizes

cost effect and the uses of hydrogen.

The cost, adjusted by any source subsidies/taxes, drives the cost attractiveness of each hydrogen path relative

to the other paths.

The options competing for attractiveness depend on the use.
The fraction of each path for the supply chain for

use as an energy carrier and for VRE storage uses the weighted fraction for each use.

Table 4.4  Hydrogen Investment Options

Use Options

Energy Carrier Yellow, Green, Pink, Blue

VRE Storage Yellow, Green

Feedstock Yellow, Green, Pink, Blue, Gray, Brown



Model Structure

Figure 4.1  Fuel Supply Capacity Model Structure



Figure 4.2  Electric Supply Capacity Model Structure

Figure 4.3  Hydrogen Supply Capacity Model Structure



Market Clearing and Utilization

The Market and Utilization sector uses a market clearing theory to balance supply and demand given costs,

prices, and assumed market attributes.
Market prices depend on the demand/supply imbalance.
They also

depend on the cost of energy production by existing capacity, which depends on technological cost

improvements, and resource constraints and overheating of capacity, all described in Supply.

Market Clearing of Fuels

The market clearing of fuels captures the supply/demand/price of each fuel at the extraction level, i.e.,

minemouth (coal), crude (oil), wellhead (natural gas), and feedstock (bioenergy).
The production supply of fuels

is a logistic function of the ratio of the market price to variable cost relative to the initial market price to variable

cost; when that ratio equals 1, the utilization of production capacity is at the normal utilization of 0.8.
The demand

for fuels is the sum of the demand for each carrier.
The indicated price of fuels is a function of the current price,

the demand/supply imbalance, and the unit cost of production of existing capacity.
The actual price is the

indicated price lagged over the price adjustment time (0.5 years).
The price of each fuel for each carrier that uses

it is the market price of the extracted fuel increased by a carrier and end use specific markup value, plus the net

of any taxes and subsidies.
The price for the industry end use is also explicitly determined for the capacity with

CCS.

The demand for each fuel for direct use (nonelectric and nonhydrogen) consumption is the product of the long

term demand and its utilization, which is a linear function of price relative to the reference price; the response of

utilization to price is given by the (negative) sensitivity.
For industry, that demand is determined explicitly end use

capacity using CCS and that not using CCS.
The former is the product of utilization with CCS and the capacity

using CCS equipment, determined by the CCS capacity and the utilization of that CCS capacity, all defined in

Carbon Capture and Storage (CCS).
The latter is the product of utilization without CCS and the capacity not using

CCS equipment.

The demand for each fuel for electricity generation is determined in the market clearing for electricity.
The actual

production of fuels for direct use consumption for energy and feedstocks, power generation, and hydrogen

production is constrained by the production of extracted fuels from their market clearing.

Market Clearing of Electricity



The market clearing for electricity is comparable to that for fuels.
However, for electricity, the utilities aggregate

the production from all sources and charge a single price to the consumer.
Furthermore, the busbar price reflects

the revenue of the utilities; the market price of electricity adds the transmission and distribution (T&D) costs to

that.
The consumer pays the T&D costs, defaulted to $0.02/kWh, to the utility regardless of the electricity

generator.
T&D costs are not subject to the learning or breakthroughs; they are assumed to remain constant

throughout the simulation (see EIA 2017 and Fares & King 2016).
The generator's unit revenue may also be

increased according to qualifying credits, explained below in Clean Electricity Standards, and by any applicable

CCS subsidies.
The busbar price relative to the variable cost of each production source determines the utilization

of production capacity.
As described for direct fuel use carriers for industry, for the primary fuels with potential

CCS, utilization is determined explicitly for revenue and costs with and without CCS.
The production of electricity

by each fuel is the sum of the production with and without CCS.
The former is the product of energy utilization

with CCS and the capacity using CCS equipment, determined by the CCS capacity and the utilization of that CCS

capacity, all defined in CCS.
The latter is the product of utilization without CCS and the capacity not using CCS

equipment.

The market price of electricity determines the utilization of the end use demand capital.
The demand for

electricity is the product of the long term demand and its utilization; electricity required for direct air capture,

carbon capture and storage, and hydrogen production are added.
The indicated busbar price is a function of the

current busbar price, the demand/supply imbalance, and the average unit cost of production of existing capacity,

weighted by the production of each electricity source.
The actual price is the indicated price lagged over the price

adjustment time (0.5 years).

Market Clearing of Hydrogen

The market clearing for hydrogen parallels that for electricity.
However, there are two distinct market clearings for

hydrogen, one for energy and the other for use as a feedstock.
As explained in Hydrogen Supply Choice, the main

difference is that, due to the inefficiencies in producing hydrogen with fuels, they would only be considered for

use as an energy carrier if the associated emissions were abated by CCS.
On the contrary, hydrogen as a

feedstock needs hydrogen molecules as an input to certain chemical processes (e.g., producing ammonia NH3

for fertilizer production) and therefore the unabated fuels are often chosen as the most attractive sources.

Another complexity with hydrogen production is that it can be used to store variable renewable energy for

electricity.
Hydrogen for this purpose is not included in the market clearing because it is not traded on the market;

rather, the hydrogen produced for it is subtracted from the total produced for energy and VRE storage.

Moreover, hydrogen for VRE storage preferentially relies on the electric grid and dedicated renewable sources.

Electricity from the grid that is used to produce hydrogen factors into the Market Clearing of Electricity.

Convention differentiates the sources of hydrogen by color.

Tax and Subsidy Adjustments to Costs

A carbon tax on fuels and source taxes reduce the margin and profit of that source; conversely, source subsidies

increase the margin and profit of that source.
Source taxes/subsidies can be applied either to capital costs, as

defaulted for electric and hydrogen sources, or to variable costs, as defaulted for fuels.
Carbon taxes, which

depend on the fuel's carbon density and fuel losses, increase the variable costs of that fuel.
For fuel-generated

electricity, the adjustment to the cost of fuel also depends on the thermal efficiency of that source.
The increase

in cost with a carbon tax can be partially offset with the net of CCS costs minus incentives.

https://www.eia.gov/todayinenergy/detail.php?id=32812
https://energy.utexas.edu/sites/default/files/UTAustin_FCe_TDA_2016.pdf


Parameter values for source subsidy/tax inputs range from highly subsidized, defined to be 60% of the marginal

cost in 2020, to very highly taxed, defined to be 200% of the marginal cost in 2020.
For fuel-generated electricity,

the percent thresholds apply to the marginal costs excluding those for fuel.
Bounds are set to policy-relevant

limits, which are source-dependent.

Clean Electricity Standards

Besides taxes and subsidies, market-driven credits or certificates are another mechanism to drive electricity to

achieve target standards.
En-ROADS allows the user to choose the sources to be counted as qualifying, the

target percent of qualifying sources of electricity produced, the duration over which to achieve the target, and the

base cost of the credits or certificates.
The costs of buying certificates and potential fines for not reaching the

standard are paid for by all sources, whereas only qualifying sources reap the revenue.

Model Structure

Figure 5.1  Market Clearing (Supply-Demand Balance) for Fuels



Figure 5.2  Demand for Fuels for Direct Use Consumption

Figure 5.3  Market Clearing (Supply-Demand Balance) for Electricity



Figure 5.4  Market Clearing (Supply-Demand Balance) for Hydrogen for Energy

Figure 5.5  Market Clearing (Supply-Demand Balance) for Hydrogen for Feedstocks



Figure 5.6  Fuel Prices with and without Taxes/Subsidies



Land Use, Land Use Change, and Forestry

En-ROADS endogenously calculates the land use, land use change, and forestry (LULUCF) net C emissions by

explicitly keeping track of each hectare of different land types; the fluxes of changing land types and the use of

each land type due to land and energy demands and policies; and the coflow of carbon on the land.
The terrestrial

biosphere carbon (TBC) cycle accounts for these anthropogenic carbon emissions as well as natural emissions

from biomass and soil respiration and releases as CH , accounted in the CH  cycle, and primary productivity of

each land type.

The TBC cycle reflects that cutting down trees releases carbon and stops them from absorbing CO  from the

atmosphere.
While harvesting crops also releases carbon, the approximately annual or faster regrowth time

allows the related carbon release to be considered net zero.

En-ROADS models different kinds of land that can be converted into the others, and the biomass and soil carbon

on the land that can accumulate or be released.
We have four different land uses: Forest, Agriculture, Other,

Tundra; with Forest further divided into three cohorts (Young, 0-50 years; Medium, 50-100 years; and Mature,

100+ years) and whether or not it resulted from afforestation (9 total land uses).

Each type of land has carbon flows:

From the atmosphere to biomass (primary production through photosynthesis)

From biomass to soil (decomposition, etc.)

From soil and biomass to the atmosphere (respiration, decay, burning)

When land use changes, some of the carbon stays on the land and some is released to the atmosphere

Figure 6.1  Land and Carbon Stock and Flow
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We cut trees or remove biomass for two reasons: we want the material or we want the land (or both).
The

material is involved in concepts like bioenergy, wood products, and forest degradation.
Needing the land means

concepts like deforestation, afforestation, land use change, and agriculture.
Those are the policies and

scenarios where you can intervene in En-ROADS with each area described below.

Drivers of Deforestation and Degradation

Land that is converted from forest becomes either Farmland (driven by needs of the food system and bioenergy)

or Other Land (non-farm deforestation).
With six subcategories of forest (NonAF/AF, Young/Medium/Mature),

the model assumes that the fraction of deforestation to farmland and to other is proportional to the land area of

each to the total forest land.

The primary driver of deforestation has historically been to expand farmland, the need for which is driven by the

food system drivers but also by the fraction of farmland expansion that comes from forest.
Farmland needs that

cannot come from forest comes from Other Land.
Farm conversion from other land (mostly grasslands and

scrub, but also deserts, barren, urban, etc.) has less effect on the carbon cycle than does deforestation.
The

fraction of farmland expansion that comes from forest is fixed (at 0.6) in the base case based on historical land

use changes.

Non-farm deforestation is exogenous, a simple Baseline scenario based on the LUH data and projections.
This

reflects forest clearing for development and mining.

The fraction of farmland expansion coming from forests, and the rate of deforestation to other land may be

modified by policy inputs.
Those inputs come in two modes: from the main Deforestation slider, the input is a

percent per year increase or decrease, which results in first order growth or decay relative to the Baseline

scenario.
In advanced settings, the user can set a year to halt which results in a linear transition to zero in the

target year.
The policies form reduction rates which are accumulated in a single stock called Relative

deforestation  which in turn multiplies each component of deforestation rate.

Forests are also harvested and allowed to regrow.
The regrowing process can remove carbon from the

atmosphere and is therefore often considered carbon-neutral.
However, it can take decades to repay the carbon

debt incurred with forest harvesting. All forests can be harvested for bioenergy or for wood products.
The

proportion of total harvest from each forest category is a function of available carbon on each category relative to

the total carbon on all forests.
A third element that is linked to the main deforestation slider is degradation of

mature forest, i.e., forest of average age greater than 100 years.
We include it because forest policies often link

deforestation and degradation, as in REDD+.
Although the terrestrial biosphere structure tracks removal and

regrowth of biomass on all forest types, we limit the policies and graphs to degradation of mature forests.

Harvest of mature forests is driven by the bioenergy structure, above, along with harvest for non-fuel wood.
Non-

fuel wood demand (lumber, paper, etc.) is a constant for each region times the population for each region.

Structure exists for including a GDP per person effect but the sensitivity is zero.

The policy to directly control degradation is identical to the ones controlling the rate of non-farm deforestation

(relative to Baseline) and farm expansion (fraction of expansion from forest), only it affects the fraction of

mature forest available for harvest.
The main deforestation slider increases or decreases degradation by a

percent per year; the advanced view sets a year to halt degradation of mature forests, which also reduces the

availability of wood for bioenergy and non-fuel harvest.



There are also command and control-type policies for land conservation; these limits do not address the drivers

of deforestation or degradation, but rather prevent those drivers from affecting forest or mature forest.
These

policies represent the "year to halt" each component.

Food and Agriculture Drivers

Expanding farmland is a major driver of deforestation and other land use change.
We start with the assumption

that land will expand to meet food needs.
We measure food in kilograms per year, and limit it to two types: crops

and animal products.
We model a single global food demand and a single global agriculture system.
The

variables involved in the causality from people to food to land are:

Figure 6.2  Food and Agriculture Drivers

Food per person is modeled as a simple function of GDP per person, fitted to the FAO food balance data, and

approaches an upper limit of 900 kg/person/year.
There are no user controls for food per person, based on our

assumption of meeting food needs.

Percent animal product is the fraction of global diet met by milk, meat, eggs, etc.
Consumption of animal product

in kg/person/year is a function of global average GDP per person, calibrated to FAO food balance data, from

which the fraction is calculated.
Under baseline GDP scenarios, it rises from its current value (24%) to a peak of

30% as GDP rises, set by the Food from livestock  slider.
The current consumption of milk, meat, etc. by region

has range from 15% (China and Other Developing B) to over 40% (US), and not strictly arranged by GDP per

person; traditional diets play a large part.
It is still expected that global animal product consumption will grow over

time as countries develop, but En-ROADS allows for users to vary that value between 10% to 40% to be reached

in 2100.



Food waste is a single stock that is by default constant at 30%. 30% is the widely quoted but poorly studied value

of the amount of food harvested but not consumed, anywhere along the value chain.
Anecdotally, it is mostly

between farm and market in developing countries, and retail or post-consumer in wealthy countries.
If you

change the Food waste  setting, the new value is reached in 2100 with a linear path.

Food consumption for both crop and animal products is the product of population, food per person, and percent

from livestock. Accounting for waste gives production needed to meet that consumption.
An additional factor

Livestock feed multiplier  gives how much plant matter (feed, fodder, grazing vegetation, etc.) it takes to

produce each kilogram of animal product. For now that is fixed at 10 kg plant / kg animal product. Farmland

desired is then those needs for plant matter divided by yield.

Yield is the global aggregate production of crops, animal feed, pasture vegetation, etc., per year per hectare.
The

crop yield structure is designed to (1) have Baseline food demand result in land use changes matching LUH

projections (2) allow for other yield growth scenarios (3) allow a feedback from temperature to yield (4) have

lower yield growth if pressure on food demand is low.

In the data model and supporting files, we find the regression fit to FAO food balance data and use that along with

the baseline assumptions to find baseline food demand.
The rate of change in implied yield gives a baseline for

the potential yield increase over time.
The potential is modified up or down by the action of the Crop yield growth

slider.
The closure of the gap between the potential yield and maximum yield reduces the crop yield growth.
The

default of the maximum yield set to 2.5 times the 2020 yield implies a comparable growth rate observed since

1960.

The two endogenous reductions to crop yield are low food pressure and high temperature change.
Food pressure

requiring farming intensity to exceed normal intensity, defaulted to be 0.7, increases the rate of crop yield growth;

the converse is true of farming intensity less than normal.
It is measured by the ratio of crops needed relative to

the crops produced under normal intensity of the farmland, defaulted to 0.7.
The integral of crop yield growth is

then reduced by the Effect of temperature on crop yield, defaulted to the mean of 4% decrease per degree C,

consistent with the Zhao et al (2017) used for the impact table.
However, the user may adjust this strength in

Assumptions.

Farmland Expansion and Contraction

Farmland expansion occurs when the ratio of crops produced to the crops that could be produced at maximum

intensity given the current farmland area exceeds the normal farmland intensity.
Conversely, if that ratio is less

than the normal farmland intensity, then what is not needed is converted to forest land via natural regrowth,

whereas the rest degrades to other land.



Other Land Decreases and Increases

Afforestation policy, i.e. the action depending on the Afforestation slider of En-ROADS, is implemented as the

conversion of other land to forest land, since the land identified to be available for afforestation, excludes

existing forests and agricultural land and falls into the other land category.
Afforestation, as a policy

implementation, is formulated based on a user-defined fraction of the full potential of afforestable land, and its

delayed conversion to afforested land, which results in the land flux of Land afforestation rate.
This flux is then

incorporated into the land use change module as a chain of conversions from the other land to young forests and

then aging to medium and mature forests. Deforestation from afforested land to farmland and other land affects

the efficacy of this policy.
The model captures historical regrowth of other land to nonAF young forest.
Other land

also decreases with farmland expansion, as only a fraction of the expansion comes from forests.

Model Structure

Figure 6.3  Land Use Change Structure



Figure 6.4  Crop Yield Structure



Terrestrial Biosphere Carbon Cycle

The terrestrial biosphere carbon (TBC) cycle reflects the primary productivity of biomass, removing carbon from

the atmosphere as it grows, the natural and anthropogenic carbon fluxes from biomass and soil stocks, the flux

from biomass carbon to soil carbon, and the fluxes of biomass and soil carbon as methane to the methane cycle.

These fluxes by land type are summed together to feed into the carbon cycle.

The Goudriaan and Ketner (1984) and IMAGE models have detailed biospheres, partitioned into leaves, branches,

stems, roots, litter, soil, and charcoal. To simplify the model, these categories are aggregated into stocks of

biomass (leaves, branches, stems, roots) and soil (litter, soil).
First-order time constants were calculated in C-

ROADS assuming equilibrium in 1850 for each category land type and C-ROADS region and aggregated across

regions for use in En-ROADS.
Charcoal is neglected due to its long lifetime.
The results are reasonably consistent

with other partitionings of the biosphere and with the one-box biosphere of the Oeschger model (Oeschger,

Siegenthaler et al., 1975; Bolin, 1986).

Net Primary Productivity (NPP)

The natural ability of biomass to sequester carbon from the atmosphere provides a key sink in the carbon cycle.

NPP is the gross primary productivity minus the autotrophic respiration.
Forest, agricultural land, other land, and

tundra all have primary production and respiration.
Furthermore, all primary production is affected by the level of

CO  in the atmosphere (the fertilization effect).
Carbon stored in biomass and soil is also released through

heterotrophic aerobic and anaerobic respiration, which increases with higher temperature (increased fire, pests,

decay). With the major exception of forests, all land reaches equilibrium quickly.
Accordingly, calibrating in C-

ROADS, the initial unit NPP of each non-forest land type is set assuming equilibrium in 1850.
The flux into the

biomass is equal to the flux out from aerobic and anaerobic respiration and transfer to soil is divided by the land

area.

Unlike the other land types, forests have the most complex growth and the most biomass, so are treated in the

most detail.
Trees take up carbon through photosynthesis / primary production, and lose it through respiration,

fire, being eaten by animals, decay, etc.
Some of the carbon lost from biomass ends up in the soil through

decomposition.
The net of these carbon flows is that forests grow in an S-shaped pattern, slowly at first, at a

high rate in middle age, and then reach an equilibrium where very high primary production is balanced by very high

respiration.
The growth curves, primary production, respiration and soil transfer rates are initialized and calibrated

with Land Use Harmonization (LUH) and OSCAR modeling output, and compared against Global Carbon Budget

(2023), Houghton and Nassikas (2017), and SSP IAMs.
The process involves determining the regional growth

curves in C-ROADS and then aggregating to global inputs for En-ROADS.
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Initialize carbon in stocks of forest, farmland, tundra, and other biomass and soil from OSCAR 1850 output

by 10 regions, disaggregated and re-aggregated to fit our 7 regions.

Initialize fractional rate of biomass and soil C respiration and transfer biomass to soil from OSCAR 1850

output.

Determine forest unit NPP Richard’s growth curve parameters for each of 7 regions.

Set Test Pulse scenario in which all LULUCF is set to 0 EXCEPT for a pulse of 95 of mature forest in

1900; when Test Pulse = 1, all fertilization and temperature feedbacks are turned off.

Set unit NPP inputs within ranges determined from forest analyses and assure unit NPP curves are

reasonable given the types of forests in each region, e.g., more tropical in India and Other Developing A

and B and more temperate in Developed.

Iteratively adjust parameters to achieve near equilibrium prior to pulse and assure regrowth is

reasonable given the types of forests in each region.

Determine forest unit NPP Richard’s growth curve parameters for global aggregation.

Create global TBC cycle in C-ROADS

Using land fluxes as sum of regional fluxes, set unit NPP inputs within ranges determined from forest

analyses such that the global forest carbon aligns with sum of regional forest carbon.

vTest pulse

vTest Baseline

Unit NPP from all other land types remain constant

Use global rates calculated from 1850 output of OSCAR model of biomass to soil transfer, biomass to

atm respiration and soil to atmosphere respiration.

Iteratively adjust parameters to achieve comparable global results as from C-ROADS.



Figure 7.1  Regrowth After Instant Deforestation

Figure 7.2  Baseline Forest Biomass

Increasing forest biomass carbon from 1980s despite decreasing forest area due to fertilization effect.

Supported by data, e.g., Table 1 in Xu et al. (2021) shows that tropical moist forests is the only biome that has

had a decrease from 2000 to 2019, but that is outweighed by the forest C increase everywhere else.
"Globally,

woody carbon stocks are increasing slowly with an average annual gain of 0.23 ± 0.09 PgC year−1."

https://www.science.org/doi/10.1126/sciadv.abe9829


Figure 7.3  Net Primary Productivity versus Biomass Density

Figure 7.4  Biomass Density Growth over Time



The logarithmic relationship of the uptake of C by the biosphere reflects the fact that the uptake is less than

proportional to the increase in atmospheric C concentration (Wullschleger, Post et al., 1995).
This formulation,

though commonly used, is not robust to large deviations in the atmospheric concentration of C.
As the

atmospheric concentration of C approaches zero, net primary production approaches minus infinity, which is not

possible given the finite positive stock of biomass.
As the concentration of C becomes very high, net primary

production can grow arbitrarily large, which is also not possible in reality.
Accordingly, we instead use a CES

production function, which exhibits the following: 1) the slope around the preindustrial operating point is

controlled by the biostimulation coefficient, which can be loosely interpreted as CO 's share of plant growth (at

the margin), with the balance due to other factors like water and nutrients; 2) there is a finite slope at zero CO ,

such that there are no singularities; and 3) it controls saturation at high CO .

NPP = net primary production

NPP  = reference net primary production

β  = biostimulation coefficient

C  = C in atmosphere

C  = reference C in atmosphere

CO ⋅sat = coefficient that determines the rate of CO  saturation

Natural Losses

Carbon stored in biomass and soil is lost due to fire and microbial/fungal respiration.
Rates of the release from

each carbon stock is increased with increasing temperature change.

Carbon in both biomass and soil is also released as natural methane, entering into the methane cycle as such.

The fractional rates of these releases also increase with temperature change.
We assume a linear relationship,

likely a good approximation over the typical range for warming by 2100. The sensitivity parameter, set by the user,

governs the strength of the effect.
The default sensitivity of 1 yields the average value found in Friedlingstein et

al., 2006. Additionally, the rate of methane from tundra increases as temperature exceeds a threshold,

representing a tipping point in the model.

Anthropogenic Carbon Fluxes

Land Use, Land Use Change, and Forestry explains the land use changes and uses.
Carbon emitted from LUC is a

coflow of each land change, driven by the Fraction biomass C emitted and Fraction soil C emitted.
The remaining

carbon, i.e., 1 minus that fraction, drives the carbon transferred to the new land type.

Net removals from regrowth after harvesting and from afforestation account for the net primary productivity

(NPP) and also for the carbon lost back to the atmosphere from aerobic and anaerobic respiration and to the

carbon and methane cycles, respectively.
In order to isolate the removals due to land changes, the model

simultaneously calculates the removals for the counterfactual scenario of no land changes.
Corresponding

coflows, aerobic and anaerobic respiration, and transfers from biomass to soil drive the TBC cycle without

harvesting and regrowth.
Accordingly, the net removals due to land changes are taken as difference in net

removals with and without the land changes.

2

2

2

NPP = NP (1 − +P0 βb βb
Ca

Ca,0

C ⋅satO2

)

1

C ⋅satO2

0
b
a

a,0
2 2



The net carbon emissions from LULUCF are the gross emissions, i.e., the LULUCF released to the atmosphere

from biomass and soil, minus the net removals due to the land changes.

A reduction in converting forests and in harvesting mature trees leads to a reduction in net emissions from

LULUCF, eventually meaning negative emissions.
Part of this is because demand for bioenergy from wood falls;

the young and medium forests cannot make up for the reduced availability of biomass from mature forests,

which makes wood more expensive.
Increases from the other sources of biomass (crops and waste) only

partially cover the reduction from wood.

Bioenergy

The amount of bioenergy used and the investment in bioenergy infrastructure is endogenously determined by

cost and other attractiveness, along with all other energy sources.
Within bioenergy, there are three feedstocks

(wood, energy crops, and waste) likewise determined by cost.
The basic structure is market clearing / market

share / logit structures for both electricity and thermal use.
The various components have independent learning

curves.

Bioenergy markets interact with the land structure because flow constraints, and therefore costs, depend on the

carbon and land available in the appropriate land use areas.
In turn, harvesting for bioenergy removes the

indicated carbon, converting any age of forest into new forest with low carbon content, or increasing the desired

farmland.

The costs, learning curves, sensitivities and other parameters are set to be reasonable compared to IEA WEO

scenarios.

LULUCF net emissions are reported in two ways, including those resulting from bioenergy and also excluding

those when reporting bioenergy emissions are reported separately.
Regardless of reporting, bioenergy emissions

and resulting net removals are appropriately included in the TBC cycle and included as such in the main carbon

cycle.
Although reported as part of the energy emissions, bioenergy net emissions are not included with the

Global C energy and industry emission flux of carbon into the atmosphere.

Emissions from bioenergy are a function of the fraction coming from each feedstock, i.e., wood, crops, and

waste/other non-crop fast-growing feedstocks.
The carbon intensity of each feedstock (GtonsC/EJ) and the

fraction of bioenergy emissions that are captured through bioCCS before entering the atmosphere also affect

emissions into the atmosphere.
The available bioenergy feedstock can constrain the extracted bioenergy supply.

All forests supply bioenergy and wood for non-fuel products according to their carbon content.
To isolate the

removals due to harvesting for bioenergy, the model also calculates the counterfactual land areas and terrestrial

biosphere carbon resulting from all fluxes excluding harvest and regrowth for bioenergy.



Forest Fires

Forest fires are emphasized due to the role of forests as carbon sinks and their slow regeneration post-burning.

Shrub and grassland fires are considered carbon-neutral due to their rapid vegetation recovery.

Historical data from the Global Wildfire Information System (GWIS) database shows a steady decline in total

annual wildfire burned area between 2002-2023 with forest fire burned area declining at a much slower rate

compared to other vegetation types.
Historical data from Global Forest Watch (GFW) shows a steady rise in

severe ‘stand-replacing’ forest fires between 2001-2023 posing a threat to forest recovery.
Furthermore, analysis

by Jones et al. (2024) concludes that severe forest fires have been annually increasing, both in area and in

intensity, over the past 2 decades particularly in areas where forest fires are linked to climate change.

Forest fires induced by climate change are explicitly modeled, estimated as a percentage of projected total forest

area.
Forest fires not induced by climate change are accounted for in the calculations of natural losses.
Similar to

natural losses, the rate of release from biomass and soil carbon stocks due to forest fires is increased with

increasing temperature change.

Forest fires release CO  and methane into the atmosphere, contributing to temperature change, which feeds

back to increase annual burned area.
Mature and medium-aged forests experiencing fires degrade into young

forests, and a portion of forest burned area is severely damaged to the extent that it cannot regrow.
This

deforestation effect is considered to be a subcategory of stand-replacing forest fires.

There is uncertainty on the impact of temperature change on wildfires in general, and on forest fires specifically.

Literature such as Lange et al. (2020), and analysis of results from Knorr et al. (2016), suggests a strong linear

effect of increasing temperature on annual wildfire burned area.
This effect is estimated combining results from

the literature with data from the GWIS database of historical wildfire area.
Furthermore, there is uncertainty on

the proportion of 'stand-replacing' burned area that is deforested.
Data from GWIS and GFW were used to

estimate the relationship between temperature and the proportion of forest fires that cause tree cover loss.

Literature and expert judgement were leveraged to estimate the fraction of stand-replacing fires that cause

permanent tree cover loss.
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Model Structure

Figure 7.5  Biosphere Carbon Stock and Flow Structure



Emissions

En-ROADS models the emissions of well-mixed greenhouse gases (GHGs), including CO , CH , N O, PFCs, SF ,

HFCs, CFCs and HCFCs.
For each gas, each potential source is modeled: energy production, energy-consuming

capital, agriculture, and waste.
CO  from energy is the largest source of total equivalent annual emissions, driven

by total energy demand, energy choices, and energy supply infrastructure constructed to meet that demand.

Other emission sources are ultimately driven by demand along with technology and practices which determine

the emissions intensity of each activity for each gas.

Data for calibrating emissions are found under Initialization, Calibration, Model Testing.
In particular, initial values

for the non-CO  GHGs are taken from 1990 data from PRIMAP 2021, assuming Agriculture includes PRIMAP

MAG and LU categories, and Waste includes PRIMAP Waste and Other categories.
Values for CO  are calibrated

to multiple sources.

Land use CO  emissions are a function of the land use changes and uses as defined in Land Use, Land Use

Change, and Forestry and Terrestrial Biosphere Carbon Cycle.

Emissions from Energy Production

Energy production emissions include those from production capacity (infrastructure), construction of that

production capacity, and from energy use.
Emissions from each stage are calculated for electricity generation

and non-electric use from each power source.

Energy use of fossil fuels and bioenergy produce the largest share of emissions.
These depend on the GHG

intensity of each source and use, and the primary energy used.
Primary energy in turn depends on demand for

each fuel, efficiency, and losses.
Fossil fuels produce mostly CO  in every application; a small amount of CH

and N O are produced in some non-electric applications from incomplete combustion.
Bioenergy produces CO ,

CH , and N O when burned.

Fossil fuel infrastructure produces CH  from off-gassing and leaks, the rate of which can be affected by policy

controls.
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Figure 8.1  Drivers of Energy Emissions

Emissions from Energy Consuming Capital

End use capital represents all the constructed and manufactured materials that use energy or cause emissions.

Capital is modeled in three economic sectors (residential & commercial, industry, transport) and three ages

(vintage 1, 2, 3).

Besides the energy used by capital and the emissions calculated under energy use above, there are direct

emissions specific to each sector.

Certain industrial processes release CO  without the combustion of fuels.
Key examples include the calcination

process for cement clinker production (CaCO  → CaO + CO ) and reduction of iron ore (Fe O +3CO →
2Fe+3CO2).
Other processes use fossil fuels as feedstocks without combustion; examples include plastic and

chemical production.
These activities release CO  into the atmosphere as the products decay, rather than

immediately.
The amount of these non-energy processes depends on GDP, and, for cement and steel, on

construction of infrastructure.

Industrial capital also emits F-gases (PFCs, SF , and HFCs), N O, and a tiny amount of CH  as a byproduct of

some processes.

Byproduct emissions are modeled as directly proportional to total industrial capital.
The ratios are subject to

changes in practices and technology.
Included in these calculations are the emissions of F-gases used as

propellants in foams, aerosols, fire extinguishers, etc - they might be emitted in any sector but are produced by

industrial capital.
Industry also uses F-gases as solvents, insulating gases, etc.
This application is modeled as a

stock of each F-gas in use which can leak, and will be discarded, recycled, or destroyed at end of life.
The

fractions for each flow are subject to changes in practices and technology, and the demand for F-gases for these

applications can change if alternatives are adopted.
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The largest emissions source from capital is refrigerants in cooling systems: refrigerators, heat pumps, air

conditioners, etc.
Demand for cooling (in GW capacity) is estimated from electric demand in the residential and

commercial sector, and total energy demand in the transportation and industry sectors.
The ratio of HFCs as

refrigerants per GW of cooling demand is estimated from initial emissions rates and trends, and can change if

alternatives are adopted.
There are stocks of HFCs in current equipment and in discarded equipment, which emit

depending on leak, recycling, and destruction rates, subject to changes in practices and technology.

Finally, ozone-depleting substances (ODSs, also called “Montreal gases”, principally CFCs and HCFCs) are

modeled as an aggregate group with averaged characteristics.
There is an exogenous emission - calibrated to

observed atmospheric concentrations - plus a user-adjustable assumed stock representing the uncertain

remaining chemicals in stockpiles and obsolete equipment.
ODS leak rates are fixed, but the stocks of ODS can

be destroyed before they leak if action is taken.

Emissions from Agriculture

Agriculture is the largest sector source of both methane and nitrous oxide, as well as the largest driver of

deforestation.
Emissions from livestock and crops are modeled individually.
The demand as described in the

Land Section determines the amount of animal product, and crop production, including the crops grown for

energy and livestock feed.
The emission factors for CH  and N O for both crops and livestock have base

improvement rates as observed from production and emission data.
Policies to lower emissions from agriculture

are modeled as an adoption process of best practices, such as better feed and manure management, fertilizer

runoff reduction and so on.
This brings the emission factors towards their minimum practical values.

Actions in the food and agriculture system also affect emissions from agriculture.
Reducing the trend towards

greater consumption of food from animals lowers emissions in two ways: by shifting some demand to crops,

which have lower emission factors; and by reducing the need for crops for animal feed.
Reducing food waste

lowers the production needed to meet food demand, lowering the activity that produces emissions in both crops

and livestock.
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Figure 8.2  Drivers of Agriculture Emissions

Emissions from Waste

The waste sector represents both landfill (garbage / trash / municipal solid waste) and wastewater (sewage).

Both subsectors emit both CH  and N O. The production of waste is modeled as a ratio of waste per person,

representing only the waste relevant for emissions.
Waste per person follows a declining trend. The emission

factors for waste are calculated from initial data.
Both the production ratio and the emission factors are reduced

by policy, as many actions (such as recycling and composting) overlap in their effects.
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Model Structure

Figure 8.3  Emissions Accounting Structure



Carbon Dioxide Removal (CDR)

The carbon dioxide removal (CDR) submodel governs the storage of carbon by biological, chemical, and industrial

means.
It includes both CDR proper, and Carbon Capture and Storage (CCS).
CDR refers to methods that take CO

from the atmosphere and sequester it as carbon somewhere else.
The CDR methods we include are

afforestation, soil carbon management, biochar, enhanced mineralization, direct air carbon capture and storage

(DACCS), and bioenergy with carbon capture and storage (BECCS).
CCS refers to methods that capture carbon

from a fuel before or after combustion, so that less CO  is released to the atmosphere.
CCS is modeled for fossil

fuels (coal and gas) and bioenergy.
There is overlap between CCS, BECCS, and DACCS including common

technologies, storage sites, economic drivers, and infrastructure.

CCS and CDR methods are modeled at various degrees of detail.
The amount and timing of removals are either

set by, calibrated to, or grounded in a synthesis of literature, most frequently the Royal Society Report.

The carbon flows calculated by CCS and CDR structures are passed to the Carbon Cycle model and flow into

biomass, soil, or sequestration stocks as appropriate.
Each storage stock is subject to a leak or loss rate,

adjustable in assumptions.
In addition to carbon flows, this sector calculates the expenditures, energy needs,

material flows, and land needs to show the impacts of relying on these techniques.

CDR Methods

Afforestation includes the land deliberately planted with trees as a means of carbon sequestration.
Additional

new forests might occur endogenously if farmland is abandoned, but that is not counted as "afforestation".

Afforestation is specified by the user as a percent of the maximum area available for planting, adjustable as an

assumption, and potentially limited by the area of Other Land available.
Once the land is specified as afforested

land, the growing forests sequester and store carbon according to the NPP and respiration drivers defined in

Terrestrial Biosphere Carbon Cycle.

Agricultural soil carbon refers to techniques that increase the amount of carbon in farmland soil.
It is specified as

a percent of the peak rate of CO  removal, adjustable in the assumptions.
The farmland carbon transfer

parameters in the Terrestrial Biosphere Carbon Cycle submodel are then adjusted to achieve that rate, potentially

limited by land availability.
The assumption on soil carbon loss rate adjusts the parameters of the Terrestrial

Biosphere Carbon Cycle as well.

Biochar refers to turning biomass into charcoal then burying the carbon in farmland as a soil amendment.
It is

specified as a percent of the peak rate of CO  removal, adjustable in the assumptions, subject to a loss rate.

Mineralization is a chemical process, also called enhanced weathering, where certain kinds of rock are spread

onto farmland, where they absorb CO .
This also has a beneficial effect on agriculture if the soil is too acidic.

The user input sets the percent of suitable farmland (adjustable in the assumptions) and the rate of CO

absorption the amount of rock applied and the specific absorption potential.
Gross absorption is adjusted by a

loss rate (default zero) and the emissions from the energy used to mine, grind and transport the necessary rock.
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Direct air carbon capture and storage (DACCS) (sometimes called DAC) is a set of technologies for chemically

separating CO  from the atmosphere so it can be sequestered.
The amount of CO  removed by DACCS is a

function of the capture equipment and the capacity to transport the captured CO , which is shared with CCS.
The

desired DACCS capacity is a function of the costs and potential incentives, which can come from carbon price or

direct subsidies.
DACCS capacity model has orders, completions and retirement, subject to delays and limits on

construction capability.
The cost of DACCS changes over time due to two competing dynamic forces.
Learning,

from accumulated experience, tends to lower costs.
The sum of the pending and installed capacity, representing

using up the sites with best access to CO  transport and storage, tends to raise costs.
The energy required to

operate DACCS equipment increases the energy demand for electricity, potentially increasing emissions.
The

gross capture by DACCS is stored in geological formations; an estimate of CO  emitted by its energy demand is

subtracted to plot net removals.

Bioenergy with CCS (BECCS) is modeled under the CCS section below.
It responds to price signals, including a

carbon price and subsidies, rather than having a user input under the CDR section.

Carbon Capture and Storage (CCS)

Both fossil and bioenergy CCS are modeled as stocks of transport capacity (shared with DACCS), and individual

capture capacities for each fuel and application, i.e., nonelectric industry and electricity generation for all end use

sectors.
Completion is subject to both development and construction delays, with a limit on overall growth rates

as construction capability itself takes time to construct.
The amount of CO  captured for each fuel and

application is the least of: CO  created in combustion, capture capacity, and available transport capacity.
If

transport capacity is limiting, it is shared in proportion to capture capacity.
Figure 9.1 shows the capacity supply

chain for electric CCS; that for direct use for industry and for hydrogen CCS parallels this structure.

Figure 9.1  Electric CCS Capacity Structure
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For each fuel and application, CCS capacity adjusts over time to the desired amount, which is determined as the

fraction of total energy capacity indicated by an s-shaped function of the ratio of marginal incentives to costs.
As

the incentives increase or costs decrease, more CCS projects are initiated up to a maximum where all energy

capacity has CCS.
Incentives for CCS can come from a carbon price, subsidies, or from a clean electricity

standard.
There is additional exogenous construction of CCS representing the historical and expected

construction for R&D, demonstration projects and the like, calibrated to historical CCS data.
The cost of CCS

includes capture and transport equipment costs, the cost of storage, and the cost of energy, which is assumed

to equal the market price of electricity from the Market Clearing sector.
Equipment costs, and the energy needed

to operate CCS, tend to decline following endogenous learning curves.
The sum of the pending and installed

capacity, representing using up the sites with best access to CO  transport and storage, tends to raise costs.

Storage costs increase with cumulative use of storage.
The balance of these dynamic changes can raise or

lower total CCS costs over time, which will alter the amount of CCS for each application.
Unit costs of existing

CCS capacity are determined by sum of the embodied capital costs of CCS and the product of market price of

electricity and the embodied energy intensity of using CCS, minus the variable incentives from the carbon tax

avoided by what is captured and unit subsidies.
The net of variable costs and incentives affect the market

clearing utilization of each fuel that might be equipped with CCS compared to other energy sources.
The ratio of

incentives to variable costs determines the CCS utilization; if a plant has CCS equipment but the CCS incentives

are no longer greater than its variable costs, the plant can still operate but without using its CCS.
The net of costs

and incentives also average into the unit costs of the total energy capacity for each fuel and application for

decisions of investments in new energy (weighted by indicated CCS capacity), and in the effects of market

prices and profitability effects (weighted by existing capacity).
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Figure 9.2  CCS Investment Structure

Figure 9.3  Nonelectric Industry CCS Costs and Incentives



Figure 9.4  Electric CCS Costs and Incentives

Figure 9.5  Hydrogen CCS Costs and Incentives



Well-Mixed Greenhouse Gas Cycles

Carbon Cycle

Introduction

The carbon cycle sub-model is adapted from the FREE model (Fiddaman, 1997).
While the original FREE structure

is based on primary sources that are now somewhat dated, we find that they hold up well against recent data.

Calibration experiments against recent data and other models do not provide compelling reasons to adjust the

model structure or parameters, though in the future we will likely do so.

Other models in current use include simple carbon cycle representations. Nordhaus’ DICE models, for example,

use simple first- and third-order linear models (Nordhaus, 1994, 2000). The first-order model is usefully simple,

but does not capture nonlinearities (e.g., sink saturation) or explicitly conserve carbon.
The third-order model

conserves carbon but is still linear and thus not robust to high emissions scenarios.
More importantly for

education and decision support, neither model provides a recognizable carbon flow structure, particularly for

biomass.

Socolow and Lam (2007) explore a set of simple linear carbon cycle models to characterize possible emissions

trajectories, including the effect of procrastination.
The spirit of their analysis is similar to ours, except that the

models are linear (sensibly, for tractability) and the calibration approach differs.
Socolow and Lam calibrate to

Green’s function (convolution integral) approximations of the 2x CO  response of larger models; this yields a

calibration for lower-order variants that emphasizes long-term dynamics.
Our calibration is weighted towards

recent data, which is truncated, and thus likely emphasizes faster dynamics.
Nonlinearities in the C-ROADS

carbon uptake mechanisms mean that the 4x CO  response will not be strictly double the 2xCO2 response.

Structure

The adapted FREE carbon cycle is an eddy diffusion model with stocks of carbon in the atmosphere, biosphere,

mixed ocean layer, and three deep ocean layers.
The model couples the atmosphere-mixed ocean layer

interactions and net primary production of the Goudriaan and Kettner and IMAGE 1.0 models (Goudriaan and

Ketner 1984; Rotmans 1990) with a 5-layer eddy diffusion ocean based on (Oeschger, Siegenthaler et al., 1975)

and a 2-box biosphere based on (Goudriaan and Ketner 1984).

The global terrestrial biosphere carbon cycle fluxes and initial biomass and soil stocks are the sum of those by

land type as defined in Terrestrial Biosphere Carbon Cycle.

The interaction between the atmosphere and mixed ocean layer involves a shift in chemical equilibria (Goudriaan

and Ketner, 1984).
CO  in the ocean reacts to produce HCO–
3  and CO=

3. In equilibrium,
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C  = C in mixed ocean layer

C  = reference C in mixed ocean layer

C  = C in atmosphere

C  = reference C in atmosphere

ζ = buffer factor

The atmosphere and mixed ocean adjust to this equilibrium with a time constant of 1 year.
The buffer or Revelle

factor, ζ, is typically about 10.
As a result, the partial pressure of CO  in the ocean rises about 10 times faster

than the total concentration of carbon (Fung, 1991).
This means that the ocean, while it initially contains about 60

times as much carbon as the preindustrial atmosphere, behaves as if it were only 6 times as large.

The buffer factor itself rises with the atmospheric concentration of CO  (Goudriaan and Ketner, 1984; Rotmans,

1990) and temperature (Fung, 1991).
This means that the ocean’s capacity to absorb CO  diminishes as the

atmospheric concentration rises.
This temperature effect is another of several possible feedback mechanisms

between the climate and carbon cycle.
The fractional reduction in the solubility of CO  in ocean falls with rising

temperatures.
Likewise for the temperature feedback on C flux to biomass, we assume a linear relationship,

likely a good approximation over the typical range for warming by 2100.
The sensitivity parameter that governs

the strength of the effect on the flux to the biomass also governs the strength of the effect on the flux to the

ocean.
For both effects, the default sensitivity of 1 yields the average values found in Friedlingstein et al., 2006.

ζ = buffer factor

ζ  = reference buffer factor

δ  = buffer CO  coefficient

C  = C in atmosphere

C  = reference C in atmosphere

The deep ocean is represented by a simple eddy-diffusion structure similar to that in the Oeschger model, but

with fewer layers (Oeschger, Siegenthaler et al., 1975).
Effects of ocean circulation and carbon precipitation,

present in more complex models (Goudriaan and Ketner, 1984; Björkstrom, 1986; Rotmans, 1990; Keller and

Goldstein, 1995), are neglected.
Within the ocean, transport of carbon among ocean layers operates linearly. The

flux of carbon between two layers of identical thickness is expressed by:

F  = carbon flux from layer m to layer n

C  = carbon in layer k

e = eddy diffusion coefficient

d = depth of layers
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The effective time constant for this interaction varies with d, the thickness of the ocean layers.
To account for

layer thicknesses that are not identical, the time constant uses the mean thickness of two adjacent layers.
The

following table summarizes time constants for the interaction between the layers used in C-ROADS, which

employs a 100 meter mixed layer, and four deep ocean layers that are 300, 300, 1300, and 1800 meters,

sequentially deeper.
Simulation experiments show there is no material difference in the atmosphere-ocean flux

between the five-layer ocean and more disaggregate structures, including an 11-layer ocean, at least through the

model time horizon of 2100.

Table 10.1  Effective Time Constants for Ocean Carbon Transport

Layer Thickness Time Constant

100 meters 1 year

300 meters 14 years

300 meters 20 years

1300 meters 236 years

1800 meters 634 years

The sum of carbon removals by non-land based CDR, defined in Carbon Dioxide Removal, is another flux from the

carbon in the atmosphere, which increases the stock of carbon sequestered.
Carbon captured from CCS also

increases that stock.
The sum of carbon from that stock that is lost re-enters the atmosphere.

Other greenhouse gases

Other GHGs included in CO equivalent emissions

The basis for emissions is described in the Emissions section.
En-ROADS explicitly models other well–mixed

greenhouses gases, including methane (CH ), nitrous oxide (N O), and the fluorinated gases (PFCs, SF , and

HFCs).
PFCs are represented as CF -equivalents due to the comparably long lifetimes of the various PFC types.

HFCs, on the other hand, are represented as an array of the nine primary HFC types, each with its own

parameters.
Ozone-depleting substances (ODSs, also called “Montreal gases”, principally CFCs and HCFCs) are

represented as an aggregated stock with averaged parameters.
The structure of each GHG’s cycle reflects first

order dynamics, such that the gas is emitted at a given rate and is taken up from the atmosphere according to its

concentration and its time constant.
Initialization is based on 1990 levels of data from GISS for CH  and N O and

according to C-ROADS (2023) for F-gases.
The remaining mass in the atmosphere is converted, according to its

molecular weight, to the concentration of that gas.
The multiplication of each gas concentration by the radiative

coefficient of the gas yields its instantaneous radiative forcing (RF).
This RF is included in the sum of all RFs to

determine the total RF on the system.
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For those explicitly modeled GHGs, the CO  equivalent emissions of each gas are calculated by multiplying its

emissions by its 100-year Global Warming Potential.
Time constants, radiative forcing coefficients, and the GWP

are taken from the IPCCs Fifth Assessment Report (AR5) Working Group 1 Chapter 8.
(Table 8.A.1. Lifetimes,

Radiative Efficiencies and Metric Values GWPs relative to CO ).

In addition to the anthropogenic emissions considered as part of the CO  equivalent emissions, CH , N O, and

PFCs also have a natural component.
The global natural CH  emissions are from the anaerobic respiration of

biomass, soil, and oceans.
The global natural N O emissions are based on MAGICC output, using the remaining

emissions in their “zero emissions” scenario.
The global natural PFC emissions are calculated by dividing

Preindustrial mass of CF  equivalents by the time constant for CF .
The units of each gas are: MtonsCH4,

MtonsN2O-N, tonsCF4, tonsSF6, and tonsHFC for each of the primary HFC types.
To calculate the CO  equivalent

emissions of N O, the model first converts the emissions from MtonsN2O-N/year to Mtons N O/year.

The sensitivity of this release defaults to 0.1% per degree Celsius over a threshold, defaulted to 2 Degrees

Celsius; the user may change these assumptions.

Cumulative Emissions

En-ROADS calculates the cumulative CO  with the initial value taken as the 1990 C-ROADS value starting in 1870.

Cumulative emissions are determined through the simulation.
The trillionth ton is a marker of cumulative

emissions above which a two degree future is far less likely.
Budgets are also presented from 2011 and from

2018, based on IPCC thresholds.
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Model Structure

Figure 10.1  En-ROADS Carbon Cycle Structure

Figure 10.2  En-ROADS Other GHGs Cycle Structure



Climate

Introduction

Like the carbon cycle, the climate sector is adapted from the FREE model, which used the DICE climate sector

without modification (Nordhaus 1994).
The DICE structure in turn followed Schneider and Thompson (1981).

The model has been recast in terms of stocks and flows of heat, rather than temperature, to make the physical

process of accumulation clearer to users.
However, the current model is analytically equivalent to the FREE and

DICE versions.
While FREE and DICE used exogenous trajectories for all non-CO  radiative forcings, this version

adds endogenous forcings from all well-mixed GHGs, i.e., CO , CH , N O, PFCs, SF , and each HFC type.

Structure

The climate is modeled as a fifth-order, linear system, with three negative feedback loops.
Two loops govern the

transport of heat from the atmosphere and surface ocean, while the third represents warming of the deep ocean.

Deep ocean warming is a slow process, because the ocean has such a large heat capacity. If the deep ocean

temperature is held constant, the response of the atmosphere and surface ocean to warming is first-order.

Temperature change is a function of radiative forcing (RF) from greenhouse gases and other factors, feedback

cooling from outbound longwave radiation, and heat transfer from the atmosphere and surface ocean to the deep

ocean layer.

T = temperature of surface and deep ocean boxes

Q = heat content of respective boxes

R = heat capacity of respective boxes

RF = radiative forcing

F  = outgoing radiative flux

F  = heat flux to deep ocean

λ = climate feedback parameter

τ = heat transfer time constant
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Radiative forcing from CO  is logarithmic of the atmospheric CO  concentration, but also dependent on the N O

concentration (IPCC AR6, 2023; NOAA, 2023).
Forcing from CH  and N O is less than the sum of RF from each

individually to account for interactions between both gases; CO  concentrations also affect forcings from N O.

Forcing from each F-gas is the product of its concentration and its radiative forcing coefficient; the total forcings

of F-gases is the sum of these products, as are the forcings from MP gases derived.
The sum of other forcings,

which include those from aerosols (black carbon, organic carbon, sulfates), tropospheric ozone, defaults to an

exogenous time-varying parameter.
The values use a composite of AR6 history 1750-2019 and their projections

for SSP4 6.0 through 2100.
The equilibrium temperature response to a change in radiative forcing is determined

by the radiative forcing coefficient, κ, and the climate feedback parameter, λ.
Equilibrium sensitivity to 2xCO2eq

forcing is 3°C in the base case. The plot of that relationship is shown as Figure 11.1.

T  = equilibrium temperature

C  = atmospheric CO  concentration

C  = preindustrial atmospheric CO  concentration

κ = radiative forcing coefficient

λ = climate feedback parameter

Figure 11.1  Equilibrium Temperature Change versus CO2 Concentration
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Model Structure

Figure 11.2  Heat Transfer Model Structure



Sea Level Rise

Sea Level Rise (SLR) is modeled by extending the semi-empirical approach proposed by Vermeer and Rahmstorf

(2009) in a way to accommodate the water impoundment by artificial reservoirs and to experiment with higher

levels of contribution to SLR from ice sheet melting in Antarctica and Greenland than already assumed.
The

model is estimated from historical data 1900-2021, a period with low levels of warming that therefore may

underestimate future sea level rise from the faster-than-historical rates of melt of the Greenland and Antarctic

ice sheets.
“Contribution to SLR from Ice Melt in Antarctica by 2100” and “Contribution to SLR from Ice Melt in

Greenland by 2100” sliders allow users to capture these effects.
Sliders are initialized with the mid-range

estimates for the contribution of ice sheet melting in Antarctica/Greenland in the IPCC AR6 report.

Model Structure

Figure 12.1  En-ROADS Sea Level Rise Model Structure



Damage to GDP

In En-ROADS, economic growth can be reduced from what it would otherwise be, due to the effects of climate

change on human activity.
En-ROADS uses temperature change as a proxy for the multiple effects of shifting

patterns of temperature, rainfall, disease, etc., that might affect the economy.
Economists refer to these effects

as the "damage function" and measure the net present value of potential damage as the social cost of carbon.

Literature on damage function

In the scientific literature, aggregate economic impact of climate change is expressed as a fraction of ‘annual

income’, global GDP or GDP per capita.
It is formulated as an increasing function of global mean temperature

change from preindustrial times.
Extensive research into the literature shows the vast disparity between

estimates of damage at varying temperature changes.
See Damage Function References.

We assessed the very low estimates (Nordhaus, 2007, 2013, and 2016; Weitzman, 2012), ranging from 1% at 2°C,

2-3% at 3°C, and 4-9% at 4°C, and 6-25% at 5°C, to be unrealistic.

The four sources we deemed most credible and covering a range of rates of increasing damage with increasing

temperature change are:

Burke et al. (2018)

Burke et al. (2015)

Dietz and Stern (2015)

Howard and Sterner (2017)

Burke et al. (2015) estimate the macro impacts of climate change from micro impacts based on an extensive

empirical study (e.g. daily temperature effect on labor productivity per person scaled up to annual and global).

They conclude that, taking nonlinearities into account, the damage is much higher than the earlier estimates,

which is 21% of GDP per capita by 2100 on average.
Wealthy countries are not unaffected.
Their estimates take

different responses by countries into account.
In the ‘pooled response’ formulation, rich and poor countries are

assumed to respond identically to the temperature change.
Short run estimates account for 1 year of

temperature, whereas long run estimates account for 5 years of temperature change.

In their 2018 study where they focus on the impact of mitigation targets, they estimate 15%–25% loss in GDP per

capita by 2100 for 2.5–3°C warming, and more than 30% for 4°C.
Their damage function is widely used in recent

studies that analyze the social cost of carbon (Ricke et al., 2018; Taconet et al., 2020; Glanemann et al., 2020).

Dietz and Stern follow the formulation of Weitzman (2012), yet assume 50% damage at 4°C.

Through a meta-analysis, Howard and Sterner (2017) determined quadratic equations to define the damage

function with varying assumptions:

Preferred model for non-catastrophic damage

Preferred model for total (non-catastrophic plus catastrophic) damages

Preferred model for total damages plus productivity



Modelling the damage function in En-ROADS

The literature has a variety of damage function forms and values.
In En-ROADS, we would like to capture all

these, and to allow users explore a wider variety of damage values while keeping the model robust.
Accordingly,

there are five options in the model, four presets using the equations to reflect the chosen literature and one to

customize the damage function with a logistic equation with user specified parameters.
There is also an

additional option to turn off the damage entirely.

For each source, the model uses the exact formula given, or determined if not provided, to capture the preset.

Burke et al (2015 and 2018) do not define a damage function but instead show curves of damage vs. temperature

change.
Accordingly, we digitized the graphs and assessed regression analyses Ω with cubic, quadratic, and

linear equations for Ω = Damage function = 1-1/(1+D).
Cubic regression, i.e., Ω = 1-1/(1+𝛼*T+𝛽*T2+𝛾*T𝛿)), best

captures the fit for all relevant temperatures.
Unlike Dietz and Stern (2015) and Burke et al (2015 and 2018),

Howard and Sterner (2017) define Ω = D as noted below.

Burke et al, 2018 SR Pooled

𝛼 = 0.3079; 𝛽 = -0.0532; 𝛾 = 0.004; 𝛿 = 3

Burke et al, 2015 LR Pooled

𝛼 = 0.3074; 𝛽 = 0.0144; 𝛾 = 0.0168; 𝛿 = 3

Dietz and Stern, 2015

𝛼 = 0; 𝛽 = 1/18.82; 𝛾 = 4𝛿; 𝛿 = 6.754

Howard and Sterner, 2017

Ω = D “Preferred model for total damages plus productivity”

Ω = 1.145 * T2

For the customized damage function, we use a logistic function formulation with three parameters, L, k and x ,

where L is the maximum damage, k refers to the steepness of the damage curve and x  is the inflection point.

This allows for a function form that captures the damage function shapes and values presented in the literature

and allows parameterization based on easily understandable user inputs (sliders) such as “the damage % at

1.5°C warming” and/or the “maximum damage” saturates at the maximum damage value entered by the users or

at 100% so that the damage and GDP values are kept in realistic ranges for extreme temperatures.

0

0

D(t) =
L

1 + e−k(T (t)− )x0

(1)



Social Cost of Carbon

Social cost of carbon (SCC) is the marginal cost of emitting one extra tone of CO  in a given year.
It is a

commonly used metric in US administration and climate policy debate.
En-ROADS shows the SCC in the present

year (i.e. 2023) calculated according to the emission trajectory in the baseline scenario, and the subsequent

economic damage of this emission trajectory which depends on the user inputs for the damage function, Social

Discount Rate, and climate sensitivity assumptions.

To calculate SCC in En-ROADS, we adopt the approach followed by United States Interagency Working Group

(IWG) (Greenstone et al., 2013), which calculated the SCC values used by the US government.
This approach

involved simulating the integrated assessment models until 2300, since atmospheric CO  has a very long lifetime

and the economic damages from today’s emissions are observed for centuries.
Therefore, even though the

normal time horizon of En-ROADS is until 2100, for SCC calculation it is extended until 2300.
In other words, all

scenarios displayed by En-ROADS cover the horizon through 2100, yet SCC is calculated based on two additional

simulations run upon demand (when users click on the SCC table on UI) through 2300.
For the post-2100 period in

these simulations to 2300, we make the following assumptions following IWG:

IWG assumes that population growth rate declines linearly after 2100, reaching zero in the year 2200, hence

a stable population after 2100.
In the En-ROADS population stabilizes by 2100 already in the baseline

scenario.

GDP per capita growth rate is assumed to decline linearly after 2100, from whatever value it takes in 2100

based on user inputs and damage, reaching zero in the year 2300.

The rate of decline in the Carbon intensity of GDP (CO  emissions from energy / GDP) between 2090 and

2100 is maintained from 2100 through 2300.
To formulate this assumption,

We calculate the average rate of change of the Carbon intensity of GDP in 2090-2100.

We compute the Post-2100 carbon intensity of GDP according to this new constant rate of change.

We calculate the post-2100 CO  emissions from energy are as the multiplication of this Post-2100

carbon intensity of GDP * Global GDP.

Net land use CO  emissions (LULUCF net emissions) are assumed to decline linearly after 2100, from any

value they take in a scenario in 2100, reaching zero in the year 2200.

Non-CO  GHG emissions (that of CH , N O, SF , PFC and HFC) are assumed to follow the same rate of

change as CO  emissions.
In other words, the post-2100 trajectory of all these GHG gases are set to follow

the trajectory of CO .
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With these assumptions for the 2100-2300 period, SCC is calculated with the following three main steps:

Step 1: Run a baseline damage scenario through 2300 and calculate the present value of damage

With any user-set assumptions for the economic impact of temperature rise (damage function) and other

climate system assumptions, the damage, i.e. the percentage of global GDP loss (D) is calculated as in Equation

1 above.
From there, annual Global GDP Loss (L) is calculated as the corresponding fraction of Global GDP

(Gross World Product, GWP), Equation 2.
These losses over time are discounted to the present year with the

variable Present Value of Global GDP Loss (PVL) based on the user-set Social Discount Rate (r) as in Equation 3,

where t  is the present year.
Present Value of Cumulative Damage until time is the accumulation of PVL as

denoted in Equation 4 where t  and t  are the initial and final time, respectively, i.e. 1990 and 2300.

Step 2: Run an emission shock scenario through 2300 and calculate the present value of damage

The same scenario as in Step 1 is simulated with an additional 1 Gton of CO  emissions in the present year.
In

other words, the trajectory of CO  emissions is perturbed with the pulse of 1 GtonCO2 yr  in the present year.

Step 3: Calculate SCC as the marginal damage between the two simulations

The difference between the Present Value of Cumulative Damage by 2300 in the two simulations yields the

social cost of carbon.
This formulation is denoted in Equation 5:

CPVL (t ) = Present Value of Cumulative Damage in the baseline damage scenario in the final time (2300)

CPVL (t ) = Present Value of Cumulative Damage in the emission shock scenario in the final time (2300)

e = amount of the emission shock (1 GtonCO2 yr )

p

0 f

L(t)

PVL(t)

CPVL(t)

= D(t) ⋅GWP(t)

= L(t) ⋅
1

(1 + r)MAX{0,t− }tp

= PVL(t)dt∫
tf

t0

(2)

(3)

(4)

2

2
-1
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Other Impacts

Air Quality–PM2.5

The air quality sector simulates annual global emissions of PM2.5.
En-ROADS estimates annual global

emissions from three sources: energy generation (electricity), energy generation (non electricity), and other

sources (including agriculture and open fires).

Figure 14.1  Sources of Particulate Pollution

Ambient PM2.5 is considered the leading environmental health risk factor globally and is a top 10 risk factor in

countries across the economic development spectrum.
PM2.5 is fine particulate matter as defined by the mass

per cubic meter of air of particles with a diameter of <=2.5 micrometers (µm).

The components of PM2.5 are solid and liquid particles small enough to remain airborne and are defined as two

forms:

1. Solids/liquid particles directly emitted to the atmosphere (primary PM).

2. Solids/liquid particles formed from gaseous precursors (secondary PM).

Components of PM2.5 may include (some of) the following:

Carbons

Sulfates

Nitrates

Chlorides

Iron

Calcium

Other Organics (solid/liquid)



Sources of PM2.5 in En-ROADS – Overview

PM2.5 is generated from multiple sources.
The chart was from research Global Sources of Fine Particulate

Matter: Interpretation of PM2.5 Chemical Composition Observed by SPARTAN using a Global Chemical Transport

Model (Weagle et al 2018).

En-ROADS aggregates these sources into the following sources:

1. Energy generation
a. Electricity production
b. Energy (non electricity) production

2. Non-energy generation
a. agriculture,
b. open fires,
c. other sources.

PM2.5 from Energy Generation

En-ROADS calculates energy generated PM2.5 emissions by applying an emissions factor (EF) (in million metric

tons (Mtons) emitted per exajoule (EJ)) for each fuel source to the annual rate of energy produced (in EJ/year).

EFs for fuel sources are calculated in several input-output models.
En-ROADS applies EFs estimated from

analysis by the International Institute for Applied Systems Analysis (IIASA).
The EFs for coal, oil, and gas were

calculated using the GAINS model (IIASA) to estimate emissions/year from G20 countries/regions and then

averaged.
Countries included the United States, several EU countries, India (2 regions) and China (3 different

regions).
The EF for bio was calculated from the RAINS model (IIASA).

Estimates for EFs were not significantly different between electricity and non electricity (which includes

industry).
En-ROADS applies the same EFs to electricity and non electricity.
Users can vary the EF assumption

across a range (by source), with a range of 50% to 150% of the base EF (shown in the table below).

Table 14.1  Emission Factors by Fuel

Source EF (Mtons/EJ)

Coal 0.1200

Oil 0.0050

Gas 0.0001

Bio 0.0400

PM2.5 from Non Energy Sources

Non-energy sources of PM2.5 are estimated by applying a per capita EF (Mtons/year/billion people) to global

population (billion people).
The per capita EF is set at the start of the scenario year.

In 2015, non-energy sources of PM2.5 accounted for 35% total PM2.5 emissions.
En-ROADs uses that 35% as an

estimate of the non-energy contribution to total prior to 2015.

EmissionRate[Fuel] = EF [Fuel] ×ElectricityProduction[Fuel]



The per capita PM2.5, is calculated in 2015 (Scenario Year) by dividing global non-energy PM2.5 (Mtons/year) by

global population in billions (2015).
For 2015 and remaining simulated years, non-energy PM2.5 (Mtons/year) is

calculated by multiplying global population (billions) by the 2015 emissions factor.

pH

The pH sector of En-ROADS reflects the empirical function presented by Bernie et al. (2010).
As the atmospheric

concentration in the atmosphere increases, the pH of the ocean decreases by a third order response.

Other Impacts from Warming

The continuous increase in the global temperature is expected to cause a variety of impacts on ecology and

human activities – in addition to sea level rise, increased ocean acidity and the loss in global GDP discussed in

previous sections.
More frequent and intense extreme weather events, major reduction in global crop yield and

biodiversity loss are some examples of the other anticipated impacts of climate change.
En-ROADS simulates

four categories of such climate impact metrics (some categories containing more than one metric):

Population Exposed to Sea Level Rise

Probability of Ice-free Arctic Summer

Crop Yield Decrease from Warming

Species Losing More than 50% of Climatic Range

Building on the findings of four peer-reviewed climate studies, we formulated the relationship between global

mean temperature (as well as sea level rise) and these metrics (primarily through interpolation and

extrapolation).

Nature Impacts from Warming

Drawing on the IPCC’s Sixth Assessment Report, we identified and formulated relationships between global

mean temperature and impacts on ecosystems.

Ecosystem Shifts from Warming

A notable projected impact of climate change is the risk of ecosystem shift which was presented in Ostberg et

al. (2013) and expanded in Warszawski et al. (2013).
Climate change is expected to cause biogeochemical

changes in land, which would affect flora and fauna and their interactions, thus impacting ecosystems.
The

assumption is the larger biogeochemical changes are, the higher the risk of ecosystems being disrupted.

Global land was classified into 16 categories as follows:

Table 14.2  Land Type Classification



Land types

Tropical rainforest Warm woody savanna, woodland & shrubland

Tropical seasonal & deciduous forest Warm savanna & open shrubland

Temperate broadleaved evergreen forest Warm grassland

Temperate broadleaved deciduous forest Temperate woody savanna, woodland & shrubland

Mixed forest Temperate savanna & open shrubland

Temperate coniferous forest Temperate grassland

Boreal evergreen forest Arctic tundra

Boreal deciduous forest Desert

Warszawski et al. (2013) used an ensemble of global vegetation models to estimate the percentage of global

land area at risk of experiencing ecosystem shifts, from one land type to another, under different temperature

scenarios.
We digitized the S-shaped relationship from Warszawski et al. (2013) Figure 3 into En-ROADS and

linked it to our temperature projections to enable the user to track the impact of different policy scenarios on

ecosystems.
We converted the percentage to area in million hectares to make it more relevant to En-ROADS

users.

Arid Land Expansion from Warming

One worrisome land type change is desertification as increased aridity can change an area's capacity to supply

ecosystem services or host biodiversity.
Increased aridity is often associated with desertification, although

recent studies show the relationship is not one-to-one.
We used a bias-corrected estimate from the CMIP5

model ensemble from Huang et al. (2016) Figure 2 to link temperature rise to the increased area of arid lands

globally.
Digitizing the relationship over time under two RCP scenarios, we estimated an exponential relationship

between global arid land area and temperature over the 21st century.

Extinction Risk of Endemic Species

As the warming climate disrupts ecosystems, many species confined to a specific region (i.e., endemic species)

are expected to be endangered with extinction due to small population sizes, loss of limited habitat, inability to

move, and low capacity to adapt.

We digitized data from Manes et al. (2021) Figure 5(b) and fit a logistic curve to estimate the percentage of

endemic species at extremely high risk of extinction, as a function of temperature relative to pre-industrial levels.

A logistic curve was selected as it was robust for making projections under high warming scenarios, while

satisfying a good fit with the data.

The temperature axis for Figure 5(b) was semi-qualitative.
We thus made reasonable assumptions on the given

temperature ranges, drawing on data from the CMIP6 (SSP) climate projections, to improve the analytical

usability of the data from the figure.



Loss in Ocean Life from Warming

Climate change is expected to affect oceans in a variety of ways including changing the average water

temperature, dissolved oxygen concentration, pH, and nutrient circulation.
Such changes may disrupt marine

ecosystems and ocean life, often represented in Earth system models as biomass.

We used data from Tittensor et al. (2021) Figure 1 and Figure 3(b) to estimate the relationship between

temperature and the percent loss in ocean biomass, relative to pre-industrial levels, using a linear fit.

We presented three trophic levels to emphasize the phenomenon of trophic amplification, whereby species at a

higher level in the food chain are more vulnerable to the effects of climate change due to reduced trophic

efficiencies, lengthening of food chains, and higher metabolic costs (Lotze et al., 2019).

Health Impacts from Warming

Drawing on peer-reviewed literature we identified and formulated relationships between global mean temperature

and impacts on human health.

Outdoor Labor Losses from Extreme Heat

As global temperatures rise, outdoor labor losses due to extreme heat are projected to increase.
Parsons et al.

(2021) illustrated this impact by linking changes in Global Mean Temperature to reductions in work capacity in

outdoor heavy labor sectors such as agriculture, forestry, fisheries, and construction.

Using an exposure-response framework based on epidemiological data, the study estimated reduction in work

capacity at different hourly Wet Bulb Globe Temperature (WBGT), with productivity losses of <1% at WBGT of

20°C, 10% at 27°C, 50% at ~32.5°C, and 90% losses at ~38°C.
Using CMIP6 projections for the 21st century, the

study generated estimates for daily WBGT for all countries included in the study (n=163) to aggregate global

heavy labor workforce, reported in Figure 3(a) of the article.

We fit an exponential curve to the data from Figure 3(a) having adjusted temperature rise to be relative to pre-

industrial levels, and used the global workforce assumptions from the supplementary material of Parsons et al.

(2021) to calculate the per worker annual hours/days of labor lost due to rising temperatures, which was

converted into 12-hour workdays.
By coding this exponential relationship into En-ROADS, we were able to

estimate future outdoor heavy labor losses due to temperature rise.

Population Exposed to River Flooding

As global temperatures rise, more people are projected to be exposed to river flooding as the likelihood of

extreme weather events rise.

The relationship between temperature rise and the population annually exposed to river floods was derived from

Alfieri et al. (2017), Fig. 4(a) and Dottori et al. (2018), Fig. 1(b), defining flood exposure as residing in areas

experiencing high-flow events with a return period larger than the value of local flood protections in a given year.

These studies estimated vulnerable populations by overlaying population density maps with global flood hazard

maps generated by a hydrological model, simulated with projections from 7 climate models.



We normalized the estimates from both studies to constant 2015 populations, allowing us to calculate

percentage-based exposure.
We fit exponential curves to both sets of results and averaged them to formulate

the relationship between temperature rise and exposure to river flooding.
Multiplying this estimated percentage

by total population in En-ROADS gives the results shown in the graph for the population exposed to river flooding.

Population Exposed to Tropical Cyclones

As global temperatures rise, more people are projected to be exposed to hurricanes, typhoons, and tropical

cyclones as the likelihood of extreme weather events rise.

Studies by Lange et al. (2020) and Geiger et al. (2021) estimated a relationship between temperature rise and the

global population at annual risk of exposure to hurricanes, typhoons, or tropical cyclones, defining exposure as

encountering hurricane-force winds (≥64 knots wind speed) for at least one minute in a given year.

We digitized and averaged data from these studies to estimate the percentage of the global population annually

exposed, using an exponential fit to formulate the relationship between temperature rise and exposure to tropical

cyclones in En-ROADS.
Multiplying this estimated percentage by total population in En-ROADS gives the results

shown in the graph for the population annually exposed to hurricanes, typhoons, or tropical cyclones.

Deaths from Extreme Heat

Vicedo-Cabrerra et al. (2018) used an exposure-response framework to estimate the relationship between

historically observed daily temperature and excess mortality in each study location.
The study used 3 Global

Climate Models (GCM) to generate daily temperature estimates for all countries included in the study to project

temperature-related excess mortality under the RCP8.5 scenario up to 2099, assuming no change in

demographics or population vulnerability.

Using the results of Vicedo-Cabrerra et al. (2021) Fig. 4(a) we determined the retrospective global estimates for

heat-related excess death, as well as those of West Asia and Southern Africa.
Assuming the projected global

trend of temperature effect on the excess heat-related mortality from Table S3 in Vicedo-Cabrerra (2018) applied

to each of the two regions, future projections were estimated for West Asia and Southern Africa, overcoming one

of the limitations of the 2018 study.

Subsequently, we converted the metric used in the above studies (% of total deaths) to a more commonly used

‘annual deaths per 100,000 people’ using World Bank Open Data for historical population and crude death rates.

Finally, we fit exponential lines through the processed data points to get region-by-region as well as global

relationships between temperature rise relative to pre-industrial levels and annual heat-related deaths per

100,000 population.

This methodology carries certain caveats.
The assumption that the global trends in temperature-related excess

mortality apply uniformly to West Asia and Southern Africa may be an underestimate of temperature-related

excess mortality risks due to local vulnerabilities.
The methodology also inherits sampling biases from the

original study, as the data were limited to certain urban populations and geographical areas, as shown in the

country list from Table S1 in Vicedo-Cabrerra (2018) below. Countries with an * are from Vicedo-Cabrerra (2021).

Table 14.3  Country Classification by Region



Regions Countries/Territories

North America Canada, United States

Central America Mexico

South America Brazil, Chile

North Europe Finland, Ireland, Sweden, United Kingdom

Central Europe Czech Republic, France, Moldova, Switzerland

Southern Europe Italy, Spain

East Asia China, Japan, South Korea

Southeast Asia Philippines, Taiwan, Thailand, Vietnam

West Asia Iran*, Kuwait*

Australia Australia

Africa South Africa*

Malaria and Dengue Exposure

As global temperatures rise, exposure to vector-borne diseases is projected to increase.
Colón-González et al.

(2021) illustrated an example of this impact by linking multiple RCP (Representative Concentration Pathways)

scenarios to projections of global population at risk (PAR) of malaria and dengue diseases.
Population at risk

does not mean catching the disease, rather living in a location where the climatic conditions promote vector

transmission for at least one month in a given year.

Using an ensemble of disease models to simulate the transmission of malaria and dengue in the 21st century,

the study estimated the effect of warming on the length of disease transmission season (LTS), and the global

PAR.
The disease models were simulated on a global 0.5 × 0.5 degree latitude–longitude grid using projections of

daily temperature, precipitation, and humidity from four global circulation models (GCM) under multiple RCP-SSP

combinations.

We estimated the relationship between temperature and the percentage of the global population at risk of

malaria, and at risk of dengue, by normalizing the population at risk projections from Figure (A8-Supplementary)

and Figure (A9-Supplementary) by their respective SSP scenario population at temperatures corresponding to

cutoff timepoints in each RCP scenario (e.g. 2030, 2050, 2100).

We fit a quadratic curve of best fit to that relationship as suggested in Colón-González et al. (2021).
We then

subtracted the estimated pre-industrial percentage of global population at risk to report the additional population

at risk due to warming.
We present the additional exposure per 100,000 people, a commonly used metric in

Epidemiology reporting.



Crop Nutrient Decrease from CO  Concentration

As atmospheric CO  levels rise, crops grown under these conditions exhibit reduced concentrations of key

nutrients such as zinc, iron, and protein, posing a threat to global nutrition (Myers et al., 2014).
Zinc and iron

deficiencies are significant public health concerns, with wheat, rice, and maize serving as critical dietary sources

of these nutrients.

The relationship between rising atmospheric CO  levels and declining crop nutrients was derived from Myers et

al. (2014).
We digitized the mid-points of impact ranges reported in the paper and calculated the implied

percentage change in nutrient content per each ppm increase in CO  concentration, given the ambient and

elevated CO  levels reported in each experiment.
This percentage change is built into En-ROADS and connected

to CO  concentration.
The linear relationship which we assume is further supported by Ziska et al. (2016).

While Myers et al. (2014) present nutrient reductions separately, we report average declines in zinc, iron, and

protein (relative to 1995 as the baseline year) to ensure comparability with the "Crop Yield Decrease from

Warming" graph.
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Model Comparison – History

The purpose of this section of the En-ROADS Technical Reference is to supplement the historical comparison

graphs in the En-ROADS application by sharing multiple comparisons of En-ROADS model behavior compared

against measured historical data.
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Use of Historical Data in En-ROADS

En-ROADS uses historical data for two purposes: initialization of the simulation and calibration.
Certain variables

in En-ROADS are initialized with their measured historical values from 1990, and then the model runs.
We

compare the model output from 1990 through present day to measured historical data to identify opportunities for

model improvement.

The graphs below compare the En-ROADS Baseline Scenario to measured historical data for select variables.

Not all variables and comparisons to history are included here.
The historical data are derived from the following

sources:

Energy Institute. (2024). Statistical Review of World Energy.

Global Carbon Budget: Friedlingstein, P., et al. (2025). Global carbon budget 2023. Earth System Science

Data, 17(3), 965-1039. [CO  energy emissions only]

IEA. (2020). Evolution of solar PV module cost by data source, 1970-2020.

IEA. (2024). World Energy Statistics & Balances.

IRENA. (2023). Renewable Power Generation Costs in 2022.

Lazard. (2023). Lazard's Levelized Cost of Energy Analysis - Version 16.0.

Met Office: Morice, C. P., et al. (2022). An updated assessment of near-surface temperature change from

1850: the HadCRUT5 dataset. Journal of Geophysical Research: Atmospheres, 126, e2019JD032361. Data

is from HadCRUT version 5.0.2.0 (2024), available at

https://www.metoffice.gov.uk/hadobs/hadcrut5/data/HadCRUT.5.0.2.0/download.html.

NASA GISS. (2025). GISS Surface Temperature Analysis (GISTEMP), version 4. NASA Goddard Institute for

Space Studies.

NOAA AGGI: NOAA. (2023). Annual Greenhouse Gas Index.

NOAA ESRL: NOAA. (2025). Trends in Atmospheric Carbon Dioxide.

PRIMAP: Gütschow, A., Busch, D., & Pflüger, M. (2024). The PRIMAP-hist national historical emissions time

series v2.6 (1750-2023). [Non-CO  greenhouse gas emissions only]
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https://www.irena.org/Publications/2023/Aug/Renewable-power-generation-costs-in-2022
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Five historical comparison graphs are also included in the En-ROADS app under Graphs > Model Comparison—

Historical and are included and disaggregated here:

Greenhouse Gas Net Emissions History

Primary Energy Demand of Coal, Oil, and Gas History

Primary Energy Demand of Wind and Solar History

Marginal Cost of Solar Electricity History

Temperature History

Primary Energy Demand History

Global primary energy demand of energy sources for the En-ROADS Baseline Scenario compared to historical

data.
This is measured in exajoules per year (joules x 10 /year) for electric and nonelectric sources combined.

Primary energy refers to the total energy from a raw energy source that is converted into consumable energy. For

example, primary coal energy demand refers to the total energy in coal that is mined, processed, and consumed.

Primary energy is greater than final energy consumption because it accounts for inefficiencies in fuel processing,

thermal conversion, and transmission and distribution (T&D).

En-ROADS, as well as many other sources, assumes that nuclear energy has an efficiency of 100% conversion of

primary energy into electricity generated.
Some sources, like the IEA World Energy Statistics & Balances, assume

that the primary energy equivalent from the electricity generation has an efficiency of 33%.
To compare En-

ROADS output to the IEA World Energy Statistics & Balances, we multiply the primary energy from nuclear in En-

ROADS by 3.

Return to Table of Contents

Final Energy Consumption History

Global total final consumption of energy sources in exajoules/year (joules x 10 /year) for electric and

nonelectric sources combined in the En-ROADS Baseline Scenario compared to historical data.

Final consumption refers to the total energy consumed to meet the demand of all final energy uses plus the use

of feedstocks for products like plastics.
For example, how much electricity a lightbulb uses or how much fuel a

truck burns are measures of final energy consumption.
It does not include energy lost through transmission and

distribution (T&D) or inefficiencies, which, in contrast, is accounted for in primary energy.

Final energy consumption is divided into two end uses: stationary (buildings and industry) and transport.

Return to Table of Contents
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Electricity Generated by Energy Source History

Return to Table of Contents

Marginal Cost of Wind, Solar, and Geothermal Electricity History

The marginal cost of electricity production from wind, solar, and geothermal energy in dollars ($US 2021) per

kilowatt hour (kWh) in the En-ROADS Baseline compared to historical data.
This is the marginal cost for energy

producers to make electricity from a new solar, wind, or geothermal installation.
The cost factors in how much it

costs to build new energy generation facilities (the levelized capital costs), how much it costs to operate and

maintain new facilities (O&M), and how much it costs to store the energy.

Return to Table of Contents

Emissions History

Global greenhouse gas emissions (GHGs) in the En-ROADS Baseline Scenario and historical data, in gigatons of

CO  or CO  equivalents per year.
CO  equivalents are used to standardize the effect of all greenhouse gases in

terms of CO .

The Greenhouse Gas Net Emissions graph measures the total gross greenhouse gas emissions minus the total

net anthropogenic carbon dioxide removal (CDR).
Contributions to gross GHGs are from carbon dioxide (CO ),

nitrous oxide (N O), methane (CH ), and the F-gases (PFCs, SF , and HFCs).

Return to Table of Contents

Atmospheric Concentrations History

Return to Table of Contents

Radiative Forcing History

The radiative forcing due to CO , CH , N O, and halocarbons in the atmosphere, in watts per meter squared

(W/m ), in the En-ROADS Baseline Scenario compared to historical data.
Halocarbons refer to F-gases (PFCs,

SF , and HFCs) and Montreal Protocol gases.

Greenhouse gases absorb infrared radiation and re-radiate it back, causing an increase in surface temperature.

Radiative forcing measures the difference between energy absorbed by the Earth and energy radiated back into

space.
When incoming energy is greater than outgoing energy, RF is positive and the planet will warm.

Return to Table of Contents
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Temperature History

Temperature change from 1850 in the En-ROADS Baseline Scenario compared to historical data, in degrees

Celsius.
NASA GISS (GISTEMP v4) includes the average and the lower and upper 95% confidence intervals.

Temperature Change

Return to Table of Contents



Model Comparison – Future

This section describes how we test En-ROADS projections against future scenarios from other scientific models.

These comparisons give us an opportunity to look for ways to improve En-ROADS and build our confidence that

En-ROADS is appropriate to its purpose of improving decision-maker understanding of the dynamics of the

climate-energy-land-economic system.

What Do We Mean by Comparisons? — One Example

To illustrate how En-ROADS compares with other models, consider the example of coal primary energy demand.

The graph below compares coal demand in the En-ROADS Baseline Scenario with six scenarios produced by

leading modeling organizations, including the Network for Greening the Financial System (NGFS), the

International Energy Agency (IEA), and the Production Gap Report.
The remaining graphs in the grid compare En-

ROADS versions of NGFS scenarios to results from the models used by NGFS.
Scroll down to see comparisons

to additional key variables.
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CH  Emissions

F-Gas Emissions

8. Carbon Sequestration Comparisons

CO  Sequestration from Afforestation and Reforestation

CO  Sequestration from Non-Afforestation Methods

1. Preliminary Findings

Our analysis shows that En-ROADS aligns well with future climate and energy scenarios modeled by major

integrated assessment models (IAMs), including those used by the Network for Greening the Financial System

(NGFS).
When tested under similar conditions, En-ROADS’ results are, on average, statistically as close to those

of other IAMs as the IAMs are to one another.
This suggests that En-ROADS reliably captures the dynamics of

the energy, land, forest, and climate systems in alignment with widely accepted scientific models, while

maintaining its strengths of speed, transparency, and ease of use.

Statistical measures, including high correlation (R ) and low error metrics like RMSE, demonstrate a strong

alignment between En-ROADS and other IAMs.
To explore these metrics, click the three dots in the upper-right

corner of a comparison graph on this page and select “Show Statistics.”

The following sections outline our methodology and scenario comparisons in greater detail.

2. Exceptions and Caveats

While we present a broad range of comparisons, not all variables and scenarios are included here.
Additionally, it

is important to note that these comparisons are not fully independent validation tests.
When designing the model,

we do not optimize our parameters to match the output of other IAMs, but we do conduct plausibility checks by

comparing En-ROADS results to projections from other models.
This approach ensures that En-ROADS remains

aligned with broader scientific expectations while preserving its independent formulation.

One notable difference between En-ROADS and the other IAMs is in the modeling of bioenergy: IAMs used by

NGFS typically assume lower net emissions from bioenergy than En-ROADS does.
Our approach to bioenergy,

which accounts for system-wide impacts, is described in Sterman, Siegel, & Rooney-Varga (2018).

3. Testing En-ROADS Against Other More Disaggregated Integrated
Assessment Models

En-ROADS belongs to a category of more aggregated, decision-maker-oriented integrated assessment models

(IAMs), complementing larger, more disaggregated models such as GCAM, MESSAGEix-GLOBIOM, and REMIND-

MAgPIE.
The larger models provide richer detail in many areas but take a significant amount of computational

power to run and return results after a delay, sometimes in hours or days.
En-ROADS, in contrast, returns results

in less than a second, enabling real-time policy experimentation by decision-makers, and is designed for

simplicity of use and transparency.
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The diagram below illustrates these dimensions, with more scope and detail higher on the y-axis and more

speed, simplicity of use, and transparency farther along the x-axis.
More-aggregated IAMs such as En-ROADS

enable users to gain insights that can be refined by more disaggregated models.
In turn, the insights of more

disaggregated models can inform the design and improve the performance of more-aggregated climate models.

These feedbacks are depicted by the two arrows.

Figure 16.1  Relationship between En-ROADS and More Disaggregated Integrated Assessment Models

The sections below compare En-ROADS scenarios to scenarios generated by models used by four organizations:

the Network for Greening the Financial System (NGFS), the International Energy Agency (IEA), the International

Atomic Energy Agency (IAEA), and the Production Gap Report.

Click the arrows to reveal more information about these scenarios.

NGFS: Network for Greening the Financial System. (2023). NGFS Phase 4 Scenario Explorer.

IEA WEO: International Energy Agency. (2024). World Energy Outlook 2024.

IAEA: International Atomic Energy Agency. (2024). Energy, Electricity and Nuclear Power Estimates for the

Period up to 2050.

Production Gap Report: SEI, Climate Analytics, E3G, IISD, and UNEP. (2023). The Production Gap: Phasing

down or phasing up? Top fossil fuel producers plan even more extraction despite climate promises.

https://data.ece.iiasa.ac.at/ngfs-phase-4/
https://www.iea.org/reports/world-energy-outlook-2024
https://www.iaea.org/publications/15756/energy-electricity-and-nuclear-power-estimates-for-the-period-up-to-2050
https://doi.org/10.51414/sei2023.050


4. Understanding En-ROADS Scenario Comparisons

Baseline Scenario Comparisons

The first graph in each grid below compares the En-ROADS Baseline Scenario to low-climate-policy scenarios

from the NGFS, IEA, IAEA, and Production Gap Report.
Note that the En-ROADS Baseline Scenario represents the

state of the world if societal and technological changes were to continue at their current rate of progress, without

additional policies or action.
Learn more in the En-ROADS Baseline Scenario chapter in the En-ROADS User

Guide.

The En-ROADS Baseline Scenario uses different assumptions than the NGFS IAMs—for example, population in

the En-ROADS Baseline Scenario is higher because it follows United Nations population projections, and the

carbon prices in the NGFS Current Policies Scenario grow higher than the carbon price in the En-ROADS Baseline

Scenario.
The variation between the En-ROADS Baseline Scenario and the IAMs producing the NGFS Current

Policies Scenario is similar to the variation among the IAMs themselves within the NGFS Current Policies

Scenario.

Simulating NGFS Scenarios Using En-ROADS

Another test of En-ROADS is to determine if En-ROADS behaves similarly to the other IAMs when run under

similar conditions, including population and economic growth assumptions.
The remaining graphs in each grid

below compare En-ROADS versions of NGFS scenarios to results from the IAMs used by NGFS.
To perform this

test, we adjust key settings—such as carbon price and deforestation—to align as closely as possible with each

NGFS scenario.
The exact inputs to the other IAMs are not published, so we used scenario descriptions and

output comparisons to adjust En-ROADS settings to match the overall trends of the NGFS scenarios for these

tests.

Note, atmospheric concentration data for NGFS Phase 5 (November 2024) has not been released, so the graphs

here compare with NGFS Phase 4, which includes this data.

To view the En-ROADS versions of the NGFS scenarios in the En-ROADS app, click on the three dots on the top

right of the graph and select “Open Scenario in En-ROADS.”

Click the arrow to display the En-ROADS settings used to create the En-ROADS version of each NGFS scenario.

En-ROADS Settings for Approximating NGFS Scenarios

https://docs.climateinteractive.org/projects/en-roads/en/latest/guide/baseline.html


Definitions of Statistical Measures

For each output variable under each scenario, we calculate statistical error measures to assess how close

results from two models are to each other.
Click on the three dots on the top right of the graph and select “Show

Statistics” to open the statistics pane on a given graph.

Statistical measures of closeness included here:

R  (coefficient of determination) shows how closely the results from one model match another.
Higher R

values are better, as they mean the two models produce similar results.

Symmetric Mean Absolute Percentage Error (SMAPE) measures the difference between two sets of

results, adjusted for the size of the values.
Lower SMAPE is better, as it means less error between the

datasets.
It's especially useful when values are very small, like near-zero emissions.

Root Mean Square Error (RMSE) shows, on average, how much the two datasets differ.
Lower RMSE is

better, since it indicates smaller differences.

Mean Squared Error (MSE) can be broken into three parts:

Bias (lower is better) shows a systematic gap between the datasets.

Unequal variance (lower is better) shows systematic differences in trends or direction of changes in

response to policy.

Unequal covariance (lower is better, but usually less concerning in long-term models) reflects

random, short-term differences.

5. Economic Input Assumptions Comparisons

The graphs below show global GDP ($US 2021 purchasing power parity) and carbon price in the En‑ROADS

Baseline and En-ROADS versions of NGFS scenarios, alongside the NGFS IAMs.
Unlike the other graphs on this

page—which display model outputs—these two graphs represent two of the inputs that drive the simulations.

Economic Growth

Economic growth in the En-ROADS Baseline Scenario is affected by the economic impact of climate change.

Learn more in the Explainer: Economic Impact of Climate Change in En-ROADS.

Carbon Price

The En-ROADS Baseline Scenario includes a carbon price rising up to $5/ton CO  and continuing throughout the

century.
Learn more in this FAQ: How is the current global carbon price calculated?

Return to Table of Contents
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6. Energy Comparisons

Total Primary Energy

En-ROADS, as well as many other sources, assumes that nuclear energy has an efficiency of 100% conversion of

primary energy into electricity generated.
Some sources, like the IEA WEO, assume that the primary energy

equivalent from the electricity generation has an efficiency of 33%.
To compare En-ROADS output to the IEA WEO,

we multiply the primary energy from nuclear in En-ROADS by 3.

Primary Energy from Coal

Primary Energy from Coal with CCS

Primary Energy from Oil

Primary Energy from Natural Gas

Primary Energy from Natural Gas with CCS

Primary Energy from Bioenergy

Primary Energy from Bioenergy with CCS (BECCS)

Primary Equivalent Energy from Nuclear

En-ROADS, as well as many other sources, assumes that nuclear energy has an efficiency of 100% conversion of

primary energy into electricity generated.
Some sources, like the IEA WEO, assume that the primary energy

equivalent from the electricity generation has an efficiency of 33%.
To compare En-ROADS output to the IEA WEO,

we multiply the primary energy from nuclear in En-ROADS by 3.

Primary Energy from Wind and Solar

Total Final Consumption of Energy Sources

Final Electric Energy Consumption

Total Final Energy Consumption - Electric Transport



Total Final Energy Consumption - Electric Buildings & Industry

Energy Intensity of GDP

Return to Table of Contents

7. Emissions Comparisons

Greenhouse Gas Net Emissions

Greenhouse gas net emissions in En-ROADS include CO  emissions from bioenergy.
In contrast, the IAMs

modeling the NGFS scenarios appear to exclude bioenergy emissions from their accounting of greenhouse gas

emissions.
The graphs below compare En-ROADS to the NGFS IAMs for (1) greenhouse gas net emissions and

(2) greenhouse gas net emissions excluding CO  from bioenergy.

CO  Net Emissions

CO  net emissions in En-ROADS include CO  emissions from bioenergy.
In contrast, the IAMs modeling the

NGFS scenarios appear to exclude bioenergy emissions from their accounting of CO  emissions.
The graphs

below compare En-ROADS to the NGFS IAMs for (1) CO  net emissions and (2) CO  net emissions excluding CO

from bioenergy.

CO  Net Emissions from Land Use, Land Use Change, & Forestry (LULUCF)

CO  net emissions from land use, land use change, and forestry (LULUCF) in En-ROADS include CO  emissions

from bioenergy.
In contrast, the IAMs modeling the NGFS scenarios appear to exclude bioenergy emissions from

their accounting of CO  emissions.
The graphs below compare En-ROADS to the NGFS IAMs for (1) CO  net

emissions from LULUCF and (2) CO  net emissions from LULUCF excluding CO  from bioenergy.

N O Emissions

CH  Emissions

F-Gas Emissions

The Baseline Scenario in En-ROADS does not assume that the Kigali Amendment to the Montreal Protocol, which

specifies 80% HFC phase out by 2047, is fully effective.

Return to Table of Contents
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8. Carbon Sequestration Comparisons

CO  Sequestration from Afforestation and Reforestation

CO  Sequestration from Non-Afforestation Methods
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Initialization, Calibration, Model Testing

En-ROADS initializes and calibrates to available historical data, primarily provided by the following sources:

Energy and Emissions

Energy Information Administration (EIA) (2019)

International Energy Agency (IEA) World Energy Balances and World Energy Statistics (2024)

Energy Institute (EI) Statistical Review of World Energy (2024)

International Atomic Energy Agency (IAEA) (2024)

Global Carbon Budget (2024) (CO  Energy Emissions and Land Use Change Emissions)

PRIMAP 2.6 (2024) (Non-CO  GHG Emissions only)

Houghton and Nassikas (2017) (CO  Land Use only)

Land Areas

Land Use Harmonization (LUH2) data (Hurtt et al., 2018)

GHG Concentrations, Radiative Forcings, Temperature Change, Sea Level Rise

National Oceanic and Atmospheric Administration (NOAA) concentrations (2025) and radiative forcings

(2023)

Goddard Institute for Space Studies (GISS) GISTEMP4 Global Mean Estimates based on Land and Ocean

Data 1880-2024 (2025)

Met Office Hadley Centre HadCRUT5.0.2.0 temperature 1850-2024 (2025)

National Aeronautics and Space Administration (NASA) satellite sea level rise (2023)

En-ROADS compares to projected values provided by the following sources:

International Energy Agency (IEA) WEO (2024)

Network for Greening the Financial System v4.2 (2024)

GCAM 6.0 (U.S.)

MESSAGEix-GLOBIOM 1.1-M-R12 (IIASA)

REMIND-MAgPIE 3.2-4.6 (Germany)

SSP Version 2.0 scenarios (2018 - Available at: https://tntcat.iiasa.ac.at/SspDb)

Netherlands Environmental Assessment Agency (PBL). Integrated Model to Assess the Global

Environment (IMAGE): Detlef van Vuuren, David Gernaat, Elke Stehfest

International Institute for Applied Systems Analysis (IIASA). Model for Energy Supply Strategy

Alternatives and their General Environmental Impact - GLobal BIOsphere Management (MESSAGE-

GLOBIOM): Keywan Riahi, Oliver Fricko, Petr Havlik

National Institute for Environmental Studies (NIES). Asia-Pacific Integrated Model (AIM): Shinichiro

Fujimori

Pacific Northwest National Laboratory (PNNL). Global Change Assessment Model (GCAM): Kate Calvin

and Jae Edmonds

Potsdam Institute for Climate Impact Research (PIK). REMIND-MAGPIE: Elmar Kriegler, Alexander

Popp, Nico Bauer

European Institute on Economics and the Environment (EIEE). World Induced Technical Change Hybrid-

GLobal BIOsphere Management (WITCH-GLOBIOM): Massimo Tavoni, Johannes Emmerling

Our default settings are guided primarily by history, IEA WEO Stated Policies Scenario (STEPS), and NGFS Current

Policies projections.

2

2

2

https://tntcat.iiasa.ac.at/SspDb


Land Calibration

The land use change module is calibrated in the regional C-ROADS based on the Land Use Harmonization (LUH2)

data prepared for the Climate Research Program Coupled Model Intercomparison Project (CMIP6).
Our output for

each land type strongly aligns with historical data.
However, our projections suggest more farmland and less

forest than do the LUH projections and those of the NGFS models.
The differences are due to our accounting for

the temperature effect on reducing crop yield, which translates to more farmland expansion to meet food

demands.
The other models do not account for that feedback.

Response to Actions

En-ROADS also uses various scenario projections for model validation.
We test the model against the NGFS

projections for their 7 scenarios.
We set population and GDP per capita controls to follow the given NGFS

trajectories and exogenously use the average of the models’ carbon price values for the given NGFS scenario,

and assess the model output versus the IAMs' results.
Learn more in the Model Comparisons—Future chapter.

An important caveat is that these other IAMs' assumptions other than carbon pricing are unknown.
Accordingly,

we force CDR and other GHG action to align with the NGFS projections for carbon removal and other GHG

emissions.
Reliably, for each scenario, the model captures the key dynamics of the NGFS models.

Although outdated now, we ran comparable assessments against all of the Shared Socioeconomic Pathway

(SSP) of the IPCC's AR5 scenarios. Comparisons were against the output of 6 models for 5 SSP scenarios, each

with up to 6 radiative forcing options, i.e., 1.9, 2.6, 3.4, 4.5, 6.0, and Baseline.
Reliably, for each SSP storyline and

RF level, the model captures the key dynamics of the SSP models.

Sensitivity Analyses

Extreme Testing

Sensitivity analyses provide insight into model robustness.
Using a Latin grid, two tests for extreme conditions,

one with standard controls and another with advanced controls, varied key actions.
The extreme values for some

variables are beyond the ranges available on the app but are tested for model robustness in Vensim.
Output

measures for each simulation were exported as a .csv file and assessed using an Excel workbook created to

confirm reasonable model behavior.

file:///home/runner/work/en-roads-app/en-roads-app/model/ref-guide/public/en/latest/comparison_future.html


Table 15.1  Sensitivity Analysis Definition (see Table 15.2 for normal slider ranges)

Variable Min Max

Basic Controls

Source tax coal tce 0 1000

Source tax oil boe 0 1000

Source tax gas MCF 0 20

Source tax bio boe 0 1000

Source tax renewables kWh -0.1 0

Carbon tax initial target 0 1000

Annual improvement to energy efficiency of new capital stationary -1 5

Annual improvement to energy efficiency of new capital transport -1 5

Electric equipment subsidy stationary 0 100

Electric equipment subsidy with required comp assets 0 100

Percent available land for afforestation 0 100

Non afforestation Percent of max CDR achieved 0 100

Advanced Controls

Damage function on 0 1

No new coal 0 100

No new oil 0 100

No new gas 0 100

Utilization adjustment factor coal 0 100

Utilization adjustment factor oil 0 100

Utilization adjustment factor gas 0 100

*



Table 15.2  Actual En-ROADS slider ranges (some values in Table 15.1 go beyond these limits)

Variable Min Max

Basic Controls

Source tax coal tce 0 110

Source tax oil boe 0 100

Source tax gas MCF 0 5

Source tax bio boe 0 30

Source tax renewables kWh -0.03 0

Carbon tax initial target 0 250

Electric equipment subsidy stationary 0 50

Electric equipment subsidy with required comp assets 0 50

Output variables for the sensitivity analyses include:

Final energy by each carrier for each end use[EndUseSector, Carrier]

Total Primary Energy Demand

Primary energy demand of coal

Primary energy demand of oil

Primary energy demand of gas

Primary energy demand of bio

Primary energy demand of nuclear

Primary energy demand of renewables

Primary energy demand of hydro

Market price of electricity

Market price of fuels[Primary Fuels]

Adjusted cost of energy per GJ

CO2 emissions from energy

Temperature change from 1850



Varying Key Assumptions

Additionally, using random triangular distribution, another set of sensitivity analyses tested the effects of varying

key assumptions with actions.
Results indicate that, regardless of these assumptions, the relative effect these

actions have on the system are robust.



References

Climate Interactive Data Files:
Data.vdfx, Created from En-ROADS data model (Data.mdl).
Global-RS GHG.vdfx,

from C-ROADS.mdl.
EnROADS-Calc.vdfx, Created from (En-ROADS-RS.mdl).
NGFS-Scenarios.vdfx, Created from

NGFS data model, dated 11/11/2024.
SSP v2 Global Data, Created from SSP v2 data model, dated 11/08/2019.

Ackerman, F. & Stanton, E. (2012). Climate risks and carbon prices: Revising the social cost of carbon. Econ.

Open-Access Open-Assess. E-J. 6, 10.

Albertus, P. (2020). Long-Duration Electricity Storage Applications, Economics, and Technologies, 2020

https://www.cell.com/joule/pdf/S2542-4351(19)30539-2.pdf.

Alfieri, L., et al. (2017). Global projections of river flood risk in a warmer world. Earth's Future, 5(2), 171-182.

Bastin, J.-F., et al. (2020). Erratum for the Report: “The global tree restoration potential” by J.-F. Bastin, Y. Finegold,

C. Garcia, D. Mollicone, M. Rezende, D. Routh, C. M. Zohner, T. W. Crowther and for the Technical Response

“Response to Comments on ‘The global tree restoration potential’” by J.-F. Bastin, Y. Finegold, C. Garcia, N. Gellie,

A. Lowe, D. Mollicone, M. Rezende, D. Routh, M. Sacande, B. Sparrow, C. M. Zohner, T. W. Crowther, . Science,

368(6494): eabc8905.

Bernie, D., Lowe, J., Tyrrell, T., Legge, O. (2010). Influence of Mitigation Policy on Ocean Acidification.

Geophysical Research Letters, 37:L15704.

Björkström, Anders. (1986). One-Dimensional and Two-Dimensional Ocean Models for Predicting the Distribution

of CO  Between the Ocean and the Atmosphere. 10.1007/978-1-4757-1915-4_14.

Borges, P.T., Lora, E.E.S., Venturini, O.J., Errera, M.R., Maya, D.M.Y., Isa, Y.M., Kozlov, A. and Zhang, S. (2024). A

Comprehensive Technical, Environmental, Economic, and Bibliometric Assessment of Hydrogen Production

Through Biomass Gasification, Including Global and Brazilian Potentials. Sustainability, 16(21), pp.1-20.

https://ideas.repec.org/a/gam/jsusta/v16y2024i21p9213-d1505288.html

Burke, M., Hsiang, S. M. & Miguel, E. (2015). Global non-linear effect of temperature on economic production.

Nature 527, 235–239.

Burke, M., Davis, W. M. & Diffenbaugh, N. S. (2018). Large potential reduction in economic damages under UN

mitigation targets. Nature 557, 549–553.

Caldecott, Ben, Lomax, Guy, & Workman, Max. (2015). Stranded Carbon Assets and Negative Emission

Technologies (Working Paper). University of Oxford Stranded Assets Programme. Retrieved from

http://www.smithschool.ox.ac.uk/research-programmes/stranded-

assets/Stranded%20Carbon%20Assets%20and%20NETs%20-%2006.02.15.pdf

Colón-González, F. J., et al. (2021). Projecting the risk of mosquito-borne diseases in a warmer and more

populated world: a multi-model, multi-scenario intercomparison modelling study. The Lancet Planetary Health,

5(7), e404-e414.

Covington, H. and R. Thamotheram. (2015). The Case for Forceful Stewardship (Part 1): The Financial Risk from

Global Warming. Available at SSRN: https://ssrn.com/abstract=2551478 or

http://dx.doi.org/10.2139/ssrn.2551478

Detz, R., Wenda, M. (2022). Projections of electrolyzer investment cost reduction through learning curve analysis.

TNO Report

2

https://www.cell.com/joule/pdf/S2542-4351(19)30539-2.pdf
https://doi.org/10.1002/2016EF000485
https://www.science.org/doi/10.1126/science.abc8905
https://ideas.repec.org/a/gam/jsusta/v16y2024i21p9213-d1505288.html
http://www.smithschool.ox.ac.uk/research-programmes/stranded-assets/Stranded%20Carbon%20Assets%20and%20NETs%20-%2006.02.15.pdf
https://www.thelancet.com/journals/lanplh/article/PIIS2542-5196(21)00132-7/fulltext
https://ssrn.com/abstract=2551478
http://dx.doi.org/10.2139/ssrn.2551478
https://energy.nl/wp-content/uploads/tno-2022-p10111_detzweeda_projections-of-electrolyzer-investment-cost-reduction-through-learning-curve-analysis.pdf


Dietz, S. & Stern, N. (2015). Endogenous growth, convexity of damage and climate risk: how Nordhaus’

framework supports deep cuts in carbon emissions. Econ. J. 125, 574–620.

Dolphin, G., & Merkle, M. (2024). Emissions-weighted Carbon Price [Data set]. In Scientific Data. Zenodo.

https://doi.org/10.5281/zenodo.12181508.

Dottori, F., et al. (2018). Increased human and economic losses from river flooding with anthropogenic warming.

Nature Climate Change, 8(9), 781-786.

EDGAR (Emissions Database for Global Atmospheric Research) Community GHG Database, a collaboration

between the European Commission, Joint Research Centre (JRC), the International Energy Agency (IEA), and

comprising IEA-EDGAR CO , EDGAR CH , EDGAR N O, EDGAR F-GASES version 7.0, (2022) European

Commission, JRC (Datasets). The complete citation of the EDGAR Community GHG Database is available in the

'Sources and References' section.

Energy Institute. (2024). Statistical Review of World Energy, 73rd Edition. https://www.energyinst.org/statistical-

review.

Erb, K.-H., Kastner, T., Plutzar, C., Bais, A. L. S., Carvalhais, N., Fetzel, T., Gingrich, S., Haberl, H., Lauk, C.,

Niedertscheider, M., Pongratz, J., Thurner, M., & Luyssaert, S. (2018). Unexpectedly large impact of forest

management and grazing on global vegetation biomass. Nature, 553(7686), 73-76.

https://doi.org/10.1038/nature25138.

Fares, R.L. and C.W. King. (2016). Trends in Transmission, Distribution, and Administration Costs for U.S. Investor

Owned Electric Utilities. White Paper UTEI/2016-06-1.

https://energy.utexas.edu/sites/default/files/UTAustin_FCe_TDA_2016.pdf.

Fiddaman, T. (1997). Feedback complexity in integrated climate-economy models.

https://dspace.mit.edu/handle/1721.1/10154

Fiddaman, T., L.S. Siegel, E. Sawin, A.P. Jones, and J. Sterman. (2023). C-ROADS Technical Reference.

https://www.climateinteractive.org/c-roads-technical-reference

Food and Agriculture Organization of the United Nations (FAO). FAOStat Database.

https://www.fao.org/faostat/en/#data.

Fung, I. et al. (1991). Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res., 96,

13033-13065, doi:10.1029/91JD01247.

Gasser, T., Crepin, L., Quilcaille, Y., Houghton, R. A., Ciais, P., and Obersteiner, M.: Historical CO  emissions from

land use and land cover change and their uncertainty, Biogeosciences, 17, 4075–4101,

https://doi.org/10.5194/bg-17-4075-2020, 2020. Plus direct communication on March 24, 2022 by the lead author,

Thomas Gasser.

Gaunt, J. L., & Lehmann, J. (2008) Energy Balance and Emissions Associated with Biochar Sequestration and

Pyrolysis Bioenergy Production. Environmental Science & Technology, 42(11), 4152–4158.

https://doi.org/10.1021/es071361i

Geiger, T., et al. (2021). Double benefit of limiting global warming for tropical cyclone exposure. Nature Climate

Change, 11, 861–866.

Gitz, V., and P. Ciais (2003), Amplifying effects of land-use change on future atmospheric CO  levels, Global

Biogeochem. Cycles, 17, 1024, doi:10.1029/2002GB001963, 1.

2 4 2

2

2

https://doi.org/10.5281/zenodo.12181508
https://doi.org/10.1038/s41558-018-0257-z
https://www.energyinst.org/statistical-review
https://doi.org/10.1038/nature25138
https://energy.utexas.edu/sites/default/files/UTAustin_FCe_TDA_2016.pdf
https://dspace.mit.edu/handle/1721.1/10154
https://www.climateinteractive.org/c-roads-technical-reference
https://www.fao.org/faostat/en/#data
https://doi.org/10.5194/bg-17-4075-2020
https://doi.org/10.1021/es071361i
https://doi.org/10.1038/s41558-021-01157-9


Glanemann, N., Willner, S. N. & Levermann, A. (2020). Paris Climate Agreement passes the cost-benefit test. Nat.

Commun. 11, 1–11.

Global Carbon Budget (GCB). (2024). Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J.,

Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl,

C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M.,

Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N.,

Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L. M., Dou, X., Duran Rojas, C., Enyo, K., Evans,

W., Fay, A. R., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber,

N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A. K., Jarníková,

T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S.

K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P. C., Metzl, N., Monacci, N.

M., Morgan, E. J., Nakaoka, S., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z.,

Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S. M., Sospedra-

Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O.,

Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan,

W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data,

https://essd.copernicus.org/preprints/essd-2024-519, 2024.

Global Forest Watch. (2024). Global burned Global Annual Tree Cover Loss from Fires, 2001 - 2023. (Accessed

2024).

Global Wildfire Information System. (2024).Global Monthly Burned Area, 2002 - 2023.. (Accessed 2024).

Goddard Institute for Space Studies (GISS) (2025) GISTEMP4 Global Mean Estimates based on Land and Ocean

Data 1880-2024.

Goudriaan, J. and Ketner, P. (1984) A Simulation Study for the Global Carbon Cycle, Including Man's Impact on the

Biosphere. Climatic Change, 6:167-192.

Greenstone, M., Kopits, E. & Wolverton, A. (2013). Developing a Social Cost of Carbon for US Regulatory Analysis:

A Methodology and Interpretation. Review of Environmental Economics and Policy 7, 23–46.

Gütschow, J.; Busch, D.; Pflüger, M. (2024): The PRIMAP-hist national historical emissions time series v2.6 (1750-

2023). zenodo. doi:10.5281/zenodo.13752654.

Hanemann, W. M. (2008). What is the economic cost of climate change?.

HDR GSFC. 2021. Global Mean Sea Level Trend from Integrated Multi-Mission Ocean Altimeters

TOPEX/Poseidon, Jason-1, OSTM/Jason-2, and Jason-3 Version 5.1. Ver. 5.1 PO.DAAC, CA, USA.

https://doi.org/10.5067/GMSLM-TJ151.
Dataset accessed 07/12/2023.

https://archive.podaac.earthdata.nasa.gov/podaac-ops-cumulus-

protected/MERGED_TP_J1_OSTM_OST_GMSL_ASCII_V51/GMSL_TPJAOS_5.1_199209_202303.txt

Hong, S., Lee, J., Cho, H., Kim, M., Moon, I. and Kim, J., (2022). Multi-objective optimization of CO  emission and

thermal efficiency for on-site steam methane reforming hydrogen production process using machine learning.

Journal of Cleaner Production, 359, p.132133.

https://www.sciencedirect.com/science/article/abs/pii/S0959652622017395

Houghton, R. A., and A. A. Nassikas (2017). Global and regional fluxes of carbon from land use and land cover

change 1850–2015, Global Biogeochem. Cycles, 31.doi:10.1002/2016GB005546.

2

https://essd.copernicus.org/preprints/essd-2024-519
https://gfw.global/3YzXhQg
https://gwis.jrc.ec.europa.eu/apps/country.profile/downloads
https://doi.org/10.5067/GMSLM-TJ151
https://archive.podaac.earthdata.nasa.gov/podaac-ops-cumulus-protected/MERGED_TP_J1_OSTM_OST_GMSL_ASCII_V51/GMSL_TPJAOS_5.1_199209_202303.txt
https://www.sciencedirect.com/science/article/abs/pii/S0959652622017395


Huang, J., Yu, H., Guan, X. et al. (2016). Accelerated dryland expansion under climate change. Nature Clim

Change 6, 166–171. https://doi.org/10.1038/nclimate2837

Humpenöder, F., Popp, A., Dietrich, J. P., Klein, D., Lotze-Campen, H., Markus Bonsch, Müller, C. (2014).

Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environmental Research

Letters, 9(6), 064029. https://doi.org/10.1088/1748-9326/9/6/064029

Hunter, Chad and Penev, Michael and Reznicek, Evan P. and Eichman, Joshua and Rustagi, Neha and Baldwin,

Samuel F., Techno-Economic Analysis of Long-Duration Energy Storage and Flexible Power Generation

Technologies to Support High Variable Renewable Energy Grids. Available at SSRN:

https://ssrn.com/abstract=3720769 or http://dx.doi.org/10.2139/ssrn.3720769

Hurtt, G. C., L. Chini, R. Sahajpal, S. Frolking, B. L. Bodirsky, K. Calvin, J. C. Doelman, J. Fisk, S. Fujimori, K. K.

Goldewijk, T. Hasegawa, P. Havlik, A. Heinimann, F. Humpenöder, J. Jungclaus, Jed Kaplan, J. Kennedy, T.
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