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Introduction

The En-ROADS Climate Solutions Simulator is a climate simulation tool for understanding how we can achieve
our climate goals through changes in energy, land use, consumption, agriculture, and other policies. En-ROADS is
a globally aggregated model of energy, economic, land use, and climate systems. The level of aggregation and
several simplifying assumptions allow the model to return results in seconds and be accessible to policy makers
and general audiences. En-ROADS is a simple climate model and complements the other, more disaggregated
models addressing similar questions, such as integrated assessment models or general circulation climate
models. Those larger disaggregated models are used for calibrating results in En-ROADS.
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Figure 1.1  En-ROADS Model Structure

En-ROADS is being developed by Climate Interactive, Ventana Systems, UML Climate Change Initiative, and MIT
Sloan.

This En-ROADS Technical Reference documents the En-ROADS model structure, equations, assumptions, and
data sources. In addition, there is an En-ROADS User Guide more suited to general audiences. For a list of
articles about the simulators see our Peer-reviewed Research page. Climate Interactive also provides extensive
training materials for En-ROADS at learn.climateinteractive.org.

Please visit support.climateinteractive.org for additional inquiries and support.

http://www.climateinteractive.org/
http://www.ventanasystems.com/
http://www.uml.edu/Research/Climate-Change/
http://mitsloan.mit.edu/
https://docs.climateinteractive.org/projects/en-roads/en/latest/index.html
https://www.climateinteractive.org/peer-reviewed-research/
https://learn.climateinteractive.org/
https://support.climateinteractive.org/


Purpose and Intended Use

En-ROADS is designed to be used interactively with groups as a basis for scienti�cally rigorous conversations
about addressing climate change. It is not intended as a tool for prediction or projections, nor does it cover every
impact of the economics, energy use, or land use decisions. It is suitable for decision-makers in government,
business, and civil society; or for anyone who is curious about the choices of our world.

En-ROADS is also useful for learning about the dynamic behavior of systems in general by highlighting those
impacting the climate:

The differences between high and lower leverage actions
The response to policies based on incentives, supply-side and demand-side interventions, mandates and
technology
Delays in the system, including capital turnover, momentum in the carbon cycle, social and technological
transitions, and more
Effective and con�icting combination of actions
The scale of required action, and the unintended consequences of some actions
The feedback between climate change and economic growth

En-ROADS allows users to adjust many of the assumptions underlying these dynamics.



Model Structure
En-ROADS is a system dynamics model. It consists of a set of ordinary differential equations in time. Variables
calculated by integration are called “stocks” (also called “levels”); components of the rate of change of a stock
are called “�ows”; variables used for intermediate steps or calculating other values include auxiliary, constant,
data, and initial variables.

Equations represent both physical processes and human decisions. There is no assumption of equilibrium or
optimal decision making. The model represents the climate, environment, economy, and energy systems at the
global level of aggregation and at the system-wide level of analysis.

En-ROADS is constructed using Vensim modeling software from Ventana Systems, and transformed into an
online simulation via the SD Everywhere converter built by Climate Interactive and Todd Fincannon.

En-ROADS is calibrated to an extensive set of historical data, and its endogenous behavior is grounded in and
made consistent with other models, in particular the Integrated Assessment Models used by the
Intergovernmental Panel on Climate Change (IPCC).

Simulation Method

The differential equations making up En-ROADS are non-linear and have no general closed form solution. Instead
they are estimated numerically using the Euler method. At each time step (∆t), auxiliary and �ow variables are
calculated from previous values of stocks, along with constants and data as needed. Each stock is then
computed by adding its previous value to the product of ∆t times the sum of all its �ows. A su�ciently small time
step is required for good approximation - a value of one eighth (0.125) year is appropriate in En-ROADS given the
characteristic times and delays in the system as modeled.

En-ROADS starts from initial values in the year 1990 and runs endogenously through 2100. The value of each
variable is stored every year. Aside from a small number of exogenous values, the model runs free - calibrated to
external data but not driven by data.



Causal Structure

At the highest level, En-ROADS calculates the concentration of each well-mixed greenhouse gas (CO , CH , N O,
PFCs, SF , and HFCs), in the atmosphere, and the resulting climate change and other impacts. Greenhouse gas
concentrations of each gas depend on its global cycle, driven by natural emissions and by anthropogenic
emissions from energy, industry, and land use. Energy and industry emissions depend on total consumption
(population times consumption per person), energy intensity of consumption, and emission intensity of energy
and industry. Agriculture emissions and the land needed for farming depend on population and diets. The impacts
of climate change create feedbacks that reduce consumption (by slowing economic growth), increase the land
needed for agriculture (by lowering yield), and alter the biosphere.
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Figure 2.1  En-ROADS Model Structure
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Scope & Detail

The model represents key processes in the energy system for a single, global region. Distinctions among regions
are obviously important in the real world, but would considerably complicate the accounting framework of the
model, particularly by introducing trade issues, and dilute the impact of any intervention, rendering it less useful
for rapid scenario experimentation.

En-ROADS is dynamic, showing behavior over time, and does not �nd “optimal” results. There are a small number
of exogenous inputs selected by the user. All other values are calculated endogenously using assumptions that
can also be adjusted by the user.

Exogenous (user inputs):
Population
Base GDP growth
Technology breakthrough
Policy choices

Endogenous:
Energy source choice
Energy carrier choice
Energy intensity
Energy variable and capital costs
Price, capacity, and utilization of extracted fuels
Price, capacity, and utilization of delivered fuels
Price of electricity and capacity and utilization of each source
Energy technology (learning by doing)
Nonrenewable resource depletion
Renewable resource saturation
Energy Storage
Carbon capture and storage
GHG & climate dynamics
Agriculture and land use
Sea level rise and other climate impacts
GDP adjusted for climate impacts

Excluded:
Inventories
Labor



The energy system is modeled in great detail, including price, technology and other factors that affect the
dynamics of energy and emissions across the full lifecycle for all sources, including potential new technologies.

Figure 2.2  Summary of the energy �ows through the system



Organization

En-ROADS is made up of several interconnected submodels which hold the equations. Model sectors are
functional and may span one or many submodels. A particular variable is always calculated in only one
submodel, but the results are passed to other submodels, and each variable may participate in many model
sectors. The submodel listing below describes what sectors each contributes to. A more detailed description of
equations and dynamics is organized by model sector in the chapters that follow.

En-ROADS.mdl: Collects and organizes model output for testing, includes all sectors.
Constants.mdl: Holds constants used across multiple sectors and submodels, such as unit conversions.
Calibration.mdl: Provides interfaces and data connections for calibrating to historical data and comparing to
other model projections under different scenarios.
Population.mdl: User selected scenarios for population, part of the demand sector.
GDP.mdl: User selected base economic growth, and slowed growth due to feedbacks, part of the demand
sector.
EnergyDemand.mdl: Desire for and choice between types of capital, and the use of capital. Part of the
demand and market clearing and utilization sectors.
EnergySupply.mdl: Investment, construction, use, and retirement of capacity in the energy sector, including
fuel extraction and delivery and electricity generation. Part of the supply and market clearing and utilization
sectors.
EnergyCostsRevenues.mdl: Calculates cost dynamics of energy sources for learning, technology, and
policies such as taxes and subsidies. Some cross-cutting energy technologies, such as e�ciency and
energy storage. Parts of demand, supply, and market clearing and utilization sectors.
EnergyPricing.mdl: Adjusts prices to balance supply and demand, Part of the market clearing and utilization
sector.
Emissions.mdl: Calculates emissions from energy and waste, and sums, accumulates and categorizes
emissions.
CDR.mdl: Calculates the amount of carbon dioxide removal (CDR), afforestation, and carbon capture and
storage (CCS) indicated by policy and price signals.
BioenergyAgriculture.mdl: Calculates food needs, land and emissions for agriculture, and the costs and
land needed for bioenergy materials. Parts of Land Use, Land Use Change, and Forestry; Terrestrial
Biosphere; Demand and Supply sectors.
TerrestrialBiosphere.mdl: Tracks the land area, carbon content in biomass and soil, and the transfers of
carbon between air, biomass, and soil for each category of land use.
CarbonCycle.mdl: Sums the carbon transfers from TerrestrialBiosphere.mdl, and tracks the stocks and
�ows of carbon and other greenhouse gases between emissions, removals, atmosphere, and oceans.
Climate.mdl: Calculates radiative forcing, heat �ows, and temperature changes in the atmosphere and
oceans.
ClimateImpacts.mdl: Calculates those impacts that depend directly on temperature, or use temperature
change as a proxy for climate change impacts.
PM25.mdl: Calculates pollution other than greenhouse gases produced from burning fuels.
SeaLevelRise.mdl: Tracks thermal expansion in the oceans, water �ows, and ice melt along with the
acidi�cation effects of dissolved CO .

In the model structure diagrams in the following chapters, there are four types of elements:

1. Variables with a box represent stocks, determined by integration.
2. Variables without a box are auxiliary variables.
3. Simple arrows indicate a causal relationship, one variable is a function of the other.
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4. Pipes represent �ows - the elements of the rate of change of stocks - shown �owing into, out of, and
between stocks.



Demand

Population, GDP, and Capital
The demand sector de�nes the global energy demand for transport (transportation), residential and commercial,
and industry end uses, all of which may be met by electric and non-electric carriers. The model determines the
energy demand according to the stock of energy-consuming capital and its associated energy requirements.

Capital grows according to GDP as calculated by speci�ed population scenarios and GDP per capita rates. GDP
exogenously uses data reported by the World Development Indicators (2023) for each region. Projections
assume GDP per capita growth rates converge from what they are in the period leading up to the last historical
year and converge to 1.5% through 2100. Population uses the UN historical data through 2021, followed by their
projections for different fertility scenarios. By default, En-ROADS assumes the medium fertility projections, but
the model can vary continuously between the lower and upper 95% con�dence intervals.

National Aggregation

En-ROADS calculates actions and outcomes for the entire globe as a single region, with the exception of
population and GDP, which are calculated for seven smaller regions. These are the same regions used in C-
ROADS.

Table 3.1  Regional Aggregation



Regions Individual Nations

United
States (US)

United States (US)

European
Union (EU)

Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,
Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxemburg, Malta, the Netherlands,
Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden

Other
Developed
Countries

Albania, Andorra, Armenia, Australia, Azerbaijan, Belarus, Bosnia and Herzegovina, Canada,
Faeroe Islands, Fiji, Georgia, Gibraltar, Greenland, Holy See, Iceland, Japan, Kazakhstan,
Kyrgyzstan, Macedonia, Moldova, Montenegro, New Zealand, Norway, Russian Federation,
Serbia, South Korea, Switzerland, Tajikistan, Turkmenistan, Ukraine, United Kingdom,
Uzbekistan

China China

India India

Other
Developing
A
Countries

Brazil, Indonesia, Hong Kong, Malaysia, Mexico, Pakistan, Philippines, Singapore, South Africa,
Taiwan, Thailand

Other
Developing
B
Countries

Afghanistan, Algeria, American Samoa, Angola, Anguilla, Antigua and Barbuda, Argentina,
Aruba, Bahamas, Bahrain, Bangladesh, Barbados, Belize, Benin, Bermuda, Bhutan, Bolivia,
Botswana, British Virgin Islands, Brunei Darussalam, Burkina Faso, Burundi, Cabo Verde,
Cambodia, Cameroon, Central African Republic, Chad, Chile, Colombia, Comoros, Congo, Cook
Islands, Costa Rica, Côte d'Ivoire, Croatia, Cuba, Democratic People's Republic of Korea,
Democratic Republic of the Congo, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El
Salvador, Equatorial Guinea, Eritrea, Ethiopia, Falkland Islands (Malvinas), Federated States of
Micronesia, French Guiana, French Polynesia, Gabon, Gambia, Germany, Ghana, Grenada,
Guatemala, Guinea, Guinea Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Iran, Iraq,
Israel, Jamaica, Jordan, Kenya, Kiribati, Kuwait, Lao People's Democratic Republic, Lebanon,
Lesotho, Liberia, Libya, Macao, Madagascar, Malawi, Maldives, Mali, Marshall Islands,
Mauritania, Mauritius, Mayotte, Mexico, Mongolia, Montserrat, Morocco, Mozambique, Namibia,
Nepal, New Caledonia, Nicaragua, Niger, Nigeria, Niue, Oman, Palau, Panama, Papua New
Guinea, Paraguay, Peru, Qatar, Réunion, Rwanda, Saint Helena, Saint Lucia, Samoa, São Tomé
and Príncipe, Saudi Arabia, Senegal, Seychelles, Sierra Leone, Slovakia, Slovenia, Solomon
Islands, Somalia, Sri Lanka, Sudan, Suriname, Swaziland, Syrian Arab Republic, Timor-Leste,
Togo, Tokelau, Tonga, Trinidad and Tobago, Tunisia, Turkey, Turks and Caicos Islands, Tuvalu,
Uganda, United Arab Emirates, United Republic of Tanzania, Uruguay, Uzbekistan, Vanuatu,
Venezuela, Vietnam, Wallis and Futuna Islands, West Bank and Gaza, Western Sahara, Yemen,
Zambia, Zimbabwe

Notes:



Other Developed Countries includes the Annex I countries within the UNFCCC process; the US and EU are
also in the Annex I.
Other Developing A Countries consists of the large developing countries with rising emissions.
Other Developing B Countries consists of smaller developing countries, including the least developed
countries and the small island states.

Capital

The capital-output ratio is assumed to be �xed such that capital and GDP rates are equivalent. Damage functions
relating to GDP impacts from temperature change are described in detail in Damage to GDP. Energy
requirements are embodied in the capital stock at the time of investment, which introduces a lag between the
energy intensity of new capital and the average energy intensity of the capital stock.

The energy intensity of new capital is governed by a response to the total cost of ownership of each carrier for
each end use and an exogenous user-speci�ed technology trend. For each end use and carrier, two price effects,
one based on energy costs and the other based on non-energy costs, also affect its energy intensity of new
capital. Each price effect is formulated according to a distinct constant elasticity, such that as the cost relative to
the reference increases, the energy intensity of that end use and carrier decreases. Likewise, as the cost relative
to the reference decreases, the energy intensity of that end use and carrier increases.

The demand sector includes energy intensity of new and average energy consuming capital, which is
disaggregated into three vintages, with energy requirements of each vintage, accounting for aging, early
discarding and retiring, and retro�tting. Capital and energy requirements of that capital are disaggregated by end
use (residential & commercial, industry, and transport), as well as by carrier (electricity and four fuels). The
nonelectric carriers are coal, oil, gas, and biomass. The model carefully tracks �nal and primary energy demand,
where the former is the energy consumed by the end use capital, and the latter is the energy needed to be
generated to meet that demand accounting for thermal e�ciency that is less than 100% and other losses.

Carrier Choice

Energy is delivered to end use capital via �ve potential carriers; there are four nonelectric carriers and one electric
carrier. Each of the nonelectric carriers matches 1:1 with each of the fuels, i.e., coal, oil, gas, and bio. The choice
between each carrier is made in the carrier choice sector.

Shares of each carrier are allocated on the basis of the relative attractiveness of options according to a logit-type
choice function, e.g.:

Attractiveness is an exponential function of cost, complementary assets (for transport only), and other factors
including phase-out policies, technical feasibility, and other effects. Cost attractiveness is determined according
to the weighted average of attractiveness based on upfront capital costs and that based on the total cost of
ownership (TCO), i.e., sticker price plus annual operation and maintenance costs plus energy costs. The weight
re�ects the value of how the buyers' attention is distributed between the sticker price and the TCO while making
purchasing decisions and is speci�ed for each end use.

Share[Carrier] =
Attractiveness[Carrier]

∑Attractiveness[Carrier]

file:///home/runner/work/en-roads-app/en-roads-app/model/ref-guide/public/en/latest/damage.html


Costs associated with the market price of energy are driven by the energy dynamics (e.g., extracted fuel
commodity cycle, market clearing algorithms). Costs associated with the end use capital may be reduced by
learning from end use experience, and for the electric carrier, adjusted with subsidies.

Complementary assets (CAs) re�ect the availability of infrastructure to support the carrier; the effect applies only
to transport end uses, re�ecting fueling points/charging stations for vehicles. The installation of CAs is a
function of the embodied carrier demand and, for the electric carrier, a policy to increase that. However, it is also
constrained by a third order delay of the installation capacity. CAs have a normal lifetime but can also be retired
early if the level exceeds the carrier demand. The level of CAs relative to that which is needed factors into the
attractiveness of each carrier. Coal is assumed to have adequate availability for the relatively small amount of
demand, notably for trains. The bio carrier uses the complementary assets of the oil carrier.

Fuel phase-out mandates also affect attractiveness, as described in Drivers of Cost of Supply.

The logit-determined shares are also subject to policies of phasing out fuel-powered capital, thereby electrifying
new capital. These policies are phased in over time. For transport, the logit and fuel phase-outs only apply to the
85% of capital that is road and rail. To electrify the remaining 15% that is for shipping and aviation, another policy
must be implemented.

Energy Intensity of New Capital

In the demand sector energy requirements are embodied separately for each fuel and for electricity. Energy
intensity of each new unit of capital drives the embodied long-term requirements. Technological improvements
and price of energy affect the energy intensity of new capital. The technological effect defaults to the historically
observed improvements, assuming those persist into the future. However, the user may change those rates of
improvement. Price effects for each end use and carrier are determined according to the long-term demand
elasticities to the price of energy and to the non-energy costs of capital. The indicated price effect for each,
which is the product of the effect of energy costs and the effect of non-energy costs, is delayed over time. There
is also a fraction of the residential and commercial sector that is by de�nition electric, e.g., lighting and
electronics. The energy intensity of this share grows with the closure of the gap between the average GDP per
capita of developing countries and the initial average of developed GDP per capita.

Long Term Energy Requirements
The energy demanding capital that is installed is a function of the desired capital and that which is lost through
discarding and retiring. The long term energy requirements are a function of the energy intensity of the capital
that is installed and tracked through the capital lifetime through each vintage. Retro�tting for each end use also
occurs, with the retro�ts at the capital share and intensity of new energy.



Model Structure

Figure 3.1  Elements of Carrier Attractiveness



Figure 3.2  Carrier Choice



Supply

Supply of Extracted Fuels, Delivered Fuels, and Electricity
Generation

There are three main supply chains to capture the stock and �ow of supply capacity of extracted fuel (coal, oil,
gas, and biofuel), delivered fuel (coal, oil, gas, and biofuel), and electricity production from each of the electric
paths (coal, oil, gas, biofuel, nuclear, hydro, wind, solar, geothermal, other renewables, and new). The model
assumes that each extracted fuel is available only for its respective delivered fuel type. All fuels plus nuclear,
hydro, renewable types, and new zero-carbon are available for the electric carrier.

Table 4.1  Carriers

Carriers Sources Used

Coal Carrier Coal

Oil Carrier Oil

Gas Carrier Gas

Bio Carrier Bio

Electric Carrier Elec Paths



Each delivered fuel is available for nonelectric and electric use. The electric only paths are mapped to the primary
source, where the renewable types are aggregated to Primary Renewables.

Table 4.2  Primary Energy Sources and Electric Paths

Primary Energy Sources Primary Fuels Elec Paths

Primary Coal PCoal ECoal

Primary Oil POil EOil

Primary Gas PGas EGas

Primary Bio PBio EBio

Primary Nuclear Nuclear

Primary Hydro Hydro

Primary Renewables

Wind
Solar 
Geothermal 
Other Renewables

Primary New New

Subscript ranges are grouped and mapped accordingly.

Table 4.3  Subscript Range Mapping

Range Paths Included

Fossil Fuels
Coal: Primary Coal, PCoal, ECoal 
Oil: Primary Oil, POil, EOil 
Gas: Primary Gas, PGas, EGas

Elec thermal ECoal, EOil, EGas, EBio

Electric Carrier

Elec thermal 
Nuclear 
Hydro 
Wind 
Solar
Geothermal
Other Renewables



The capacity and utilization and cost of extracted fuels affect the market price of extracted fuels, which feeds
into the variable cost of delivered fuels. As such, the market price of extracted fuels affects the capacity,
utilization, and market price of delivered fuels, which in turn feeds into the variable cost of electric producers
using those fuels. Accordingly, the costs of delivered fuels affect the capacity and utilization of those electricity
sources. Market Clearing and Utilization details the market clearing and utilization of delivered fuels and
electricity sources.

For each of these phases, the capacity represents the installed base of usable capital. It depreciates via a
constant fractional rate, without age vintaging of the stock. The pro�tability, however, affects the rate of
depreciation. For delivered fuels and electric supply, capacity must go through the development phase and then
constructed before it can be used, introducing a delay between initiating and completing the acquisition of new
capacity. The amount of capacity that is planned for construction accounts for the total capacity needed to meet
the energy demand, including transmission and delivery losses, plus a reserve margin and expected growth of
energy requirements.

For capacities of extracted fuels and of delivered fuels for nonelectric consumption, the desired capacity of each
depends in part on the centralized effect of expected growth and normal utilization, as well as on the pro�tability
and current capacity of each fuel. Any non-cost policies banning new capacity adjust the resulting desired
capacity. For electric generation, the desired capacity of each source depends on the demand of electricity and
the Fraction invested in elec energy source , as well as the pro�tability and current capacity of each source.
Desired capacities are adjusted by dividing by the capacity factor of each resource, requiring more of each
energy path to be constructed to get the actual desired supply. The constructed supply is then multiplied by the
capacity factor to yield the actual capacity. While the Actual Supply Capacity represents the amount of energy
from each path that can be dispatched, the Energy Supply Capacity is the amount of energy that is constructed.

The rate of capacity completion is constrained by the capacity to do so. This structure captures supply chain
constraints, for example the fact that if wind turbine orders double overnight, completion of new turbines cannot
also double immediately. It takes time to acquire labor and machinery and build up other aspects of the
necessary supply chain. This has two consequences: with increasing pressure to construct capacity, the
effective lead time increases, and the cost of new capacity rises.

Drivers of Cost of Supply

Several factors affect the cost of each supply source, including,

A baseline or reference cost
a learning-by-doing effect from the accumulation of experience in capacity installation
an exogenous user-speci�ed cost reduction from technological breakthroughs achieved through research
and development (R&D)
cost of fuels as determined by the delivered fuel market price and e�ciency of fuel use
resource constraints
source subsidies/taxes
storage costs for variable renewables (solar and wind)
soft costs for renewables
emissions cost from carbon pricing
qualifying electricity standards costs and penalties, Qualifying Electricity Standards (QES)
a “pipeline overheating” premium from supply chain constraints on capacity installation, Supply of Extracted
Fuels, Delivered Fuels, and Electricity Generation



Resource Constraints

The Resource Constraints sector addresses the potential limits to available energy resources and the effects
those limits may have on supply costs. The resource effect cost is a function of the depletion effect on cost and
the supply curve effect on cost.

The depletion effect is dynamic, with cost increasing as cumulative production grows. This captures cost
escalation with the depletion of fossil fuels. It is possible to discover unconventional resources, thereby reducing
the depletion effect; however, it is assumed that the unconventional resources have a different carbon intensity,
adjusted by the user. Biomass is not limited by depletion but rather by the supply constraints of each feedstock,
i.e., wood, crops, and others, which re�ects the limit of production of energy from a source from the saturation of
production opportunities. These resource constraints affect the extraction costs of fuels, resulting in a greater
market price of extracted fuels. In turn, a greater market price of extracted fuels drives up the market price of
delivered fuels for nonelectric use and increases the cost to produce electricity from the thermal paths with and
without CCS.

The supply curve constraint can also affect the cost to produce the electric only paths, i.e., nuclear, hydro,
renewable types, and new zero-carbon; of these sources, the model defaults to only affect hydro and
renewables. Supply limitations for these paths affect the O&M and capital costs, capturing, for example, the
escalation in cost of wind power that occurs as the cheapest sites are exploited �rst.

Parameters are based on IPCC 2007 and IEA 2022 estimates.

Storage for Renewables

Storage capacity for variable renewable energy (VRE) must meet its demand when the source is not available.
Variable renewables include wind and solar, whereas geothermal and other renewables are more constant in
their generation. Models of hourly, daily, and seasonal variability of demand and renewable generation determined
the storage coverage, i.e., energy per variable renewable capacity (EJ per EJ/year), and the average power
needed from storage per variable renewable capacity (EJ/year per EJ/year). Sensitivity analyses of each
category of coverage determined the relationships between these parameters and the share of VRE capacity to
total electric generation capacity. These analyses also con�rmed the effect that round trip e�ciency (RTE) has
on the required coverage; it scales 1/RTE such that the lower the RTE to use storage, the higher the maximum
storage capacity for storage required. The resulting relatingship between hours of coverage versus VRE share is
consistent with that found by others, including Solomon et al. (2017), Shaner et al. (2018), and Albertus (2020).

The sum of coverages for the different categories of variability is allocated to short (<4 hours), medium (4-12
hours), and long duration storage (>12 hours). Besides storage, other demand response technology, long-
distance transmission, and behavioral load management can minimize storage needs but only for short and
medium coverage. Learning and investment increases the percent effect these options have on the storage
requirements.

While the model assumes that storage requirements will not limit utilization, costs of renewables account for
those for storage. Comparable to the experience and breakthrough effects for energy, storage costs also
decrease with cumulative capacity installation and potential technological breakthroughs.

Storage could be in the form of batteries, compressed air, pumped hydropower, and other more novel options,
including hydrogen. NREL's Store-FAST: Energy Storage Financial Analysis Scenario Tool, version: 1.2 (2019),
provides the inputs for power and energy costs, including RTE, for several storage options. The levelized cost of
each type adds the cost of electricity for it, which is the market price of electricity divided by the storage RTE.



Other than hydrogen, these technologies all become limited and/or more costly with longer durations of
coverage. Cost effective long duration coverage is critical when the share of VRE exceeds approximately 70-80%.
Hydrogen, despite having a much lower RTE, approximately 36%, has the potential to provide more cost effective
long duration coverage than the other technologies. This is because, although the power costs associated with
hydrogen far exceed those other storage options, the costs to store each hour of energy coverage is far less than
the other options. Despite that cost effectiveness for long-term coverage, ancillary costs currently associated
with hydrogen storage constrain its use. A breakthrough in hydrogen also reduces these ancillary costs, thereby
allowing it to take advantage of its cost attractiveness for long-term coverage.

Electricity for Storage

In addition to the power and energy costs, each storage option also requires electricity for charging and
discharging. Electricity exceeding that which is generated from storage, determined from the sum of the average
power needed from storage per variable renewable capacity from the hourly, daily, and seasonal models, is added
to the industrial electric carrier demand. For example, an RTE of 100% requires no additional electricity; an RTE of
80% requires 0.25 times the power required; and an RTE of 36% requires 1.77 times the power required. By
default, the electricity all comes from the grid.

Hydrogen Leakage

Hydrogen leakage, defaulted at 2%/year, releases hydrogen to the atmosphere. While there is no direct radiative
forcing from hydrogen, the climate structure accounts for its indirect effects on the radiative forcings of CH , O ,
H O, and aerosols (Sand et al., 2023).

Soft Costs and Subsidies for Renewables

The levelized cost of electricity (LCOE) of renewables, particularly wind and solar energy, have decreased
dramatically since 1990, especially over the past decade. Two opposing forces have contributed to those
declines with the energy generated by them. There have been historical subsidies for solar and wind, de�ned as
a fraction of their direct costs, stimulating their growth. While the fraction of solar subsidies declined over time
until 2020, that fraction and the fraction for wind is expected to remain constant through 2100 as Baseline
subsidies, comparable to the fossil fuel subsidies embedded in their costs. However, the user can end them
sooner. There have also been soft costs, i.e., indirect costs, that have made the investment in these sources less
attractive than direct cost alone would suggest. It captures the soft costs as an initial level that declines with
experience at a rate determined by a progress ratio. The values de�ning these subsidies and soft costs were
estimated from literature and set through optimization to �t historical cost (IRENA, 2020; Lazard, 2021; IEA, 2020)
and energy data (IEA, 2022; BP, 2022).

Sources of LCOE data for renewables are not consistently presented and only available for some years, therefore
requiring conversions and bridging between datasets.

IRENA: All LCOE results are reported in $2019 USD. Reported values calculated excluding any �nancial
support and using a �xed assumption of a real cost of capital of 7.5% in OECD countries and China, and 10%
in the rest of the world, unless explicitly mentioned. All LCOE calculations exclude the impact of any
�nancial support. Converted to $2017.
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LAZARD 3.0-15.0: All LCOE results reported in nominal dollars. Each analysis assumes 60% debt at 8%
interest rate and 40% equity at 12% cost; Unless otherwise indicated, the analysis herein does not re�ect
decommissioning costs, ongoing maintenance-related capital expenditures or the potential economic
impacts of federal loan guarantees or other subsidies; Lazard’s unsubsidized LCOE analysis indicates
signi�cant historical cost declines for utility-scale renewable energy generation technologies. Converted to
$2017.

IEA Levelized Costs Data: Global average LCOEs and auction results for utility-scale PV by commissioning
date. Last updated 26 Oct 2022. Data shown = LCOE in $2017.

IEA: Evolution of solar PV module cost by data source, 1970-2020. Last updated 26 Oct 2022. While the
LCOE data for solar PV is not readily available before 2009, IEA’s cost per watt of solar PV from IEA 1970-
2020 provides data to estimate the LCOE from 1990. Using the ratio of annual costs per watt to that in 2010
and applying that ratio to the IRENA solar PV LCOE in 2010 provides an estimate of LCOE from 1990-2019.

Berkeley. Median 30-Year LCOE without the ITC reported in $2018. Converted to $2017.

Utility vs distributed solar PV: There are differences between utility scale and distributed solar PV. According to
IEA (2022), the fraction of PV that is utility scale grew from 24% to 50% of solar PV between 2010-2016,
remaining at that level thereafter. Lazard provides utility scale and distributed cost data; accordingly,
comparisons are made to the weighted average of these. The weights assume the trend of increasing utility
scale relative to distributed increases at a comparable rate to history.

Onshore vs offshore wind: Likewise, there are differences between onshore and offshore wind. IRENA used the
weighted average of the onshore fraction of wind, taken from IEA Wind Electricity Report, to get the weighted
average of wind LCOE. From regional graphs of onshore vs offshore wind, they estimated wind to be 100%
onshore until 2010, when offshore wind starts to present, decreasing down to 95% by 2019.

Instant and Embodied Supply Costs and E�ciencies

The embodied costs of supply are modeled in the Embodied Supply Costs sector. These costs factor into the
utilization of energy capacity in the Market Clearing and Utilization sector. Embodied costs represent the actual
physically-imposed costs, which are locked in at the time of capacity investment, i.e., new capacity development.
Variable costs include operation and maintenance (O&M), and fuel costs. The fuel costs for delivered fuels are
the extracted fuel costs. The fuel cost for each electric source requiring fuel is the market price of extracted fuel,
accounting for a markup, divided by the embodied thermal e�ciency of the source; fuel prices for the primary
electric paths are 0. Unit pro�t, which is the revenue less the variable costs, may be adjusted by a tax/subsidy
and/or carbon tax to the producers of delivered fuels.

As in the Demand sector, the construction pipeline is explicit but without vintaging of capital as there is in the
demand side; costs are assumed to be well-mixed. All inputs to this sub-model are determined in other sub-
models except for the Overheating cost sensitivity, which is set at 0.5. The embodied costs and e�ciencies of
supply are locked in at the time new capacity development.

The effects on costs apply to the levelized capital costs as well as to O&M and fuel costs.

https://www.lazard.com/media/sptlfats/lazards-levelized-cost-of-energy-version-150-vf.pdf
https://www.iea.org/data-and-statistics/charts/global-average-lcoes-and-auction-results-for-utility-scale-pv-by-commissioning-date
https://www.iea.org/data-and-statistics/charts/evolution-of-solar-pv-module-cost-by-data-source-1970-2020
https://emp.lbl.gov/utility-scale-solar
https://www.iea.org/reports/solar-pv
https://www.iea.org/reports/wind-electricity


Electric Supply Choice

As in the Carrier Choice sectors, the fraction of new investment allocated to each of the electric energy sources
is a function of its attractiveness relative to that of the other sources. Attractiveness synthesizes cost effect and
the effect of a performance standard.

The cost, adjusted by any source subsidies/taxes, drives the cost attractiveness of each electric path relative to
the other electric paths.

The performance standard effect is a function of a speci�ed carbon intensity threshold and the carbon intensity
of each energy source resource, de�ned in Emissions. The performance standard creates a soft threshold,
beyond which sources with high emissions intensity (e.g., coal) are greatly diminished in attractiveness and are
effectively eliminated from the investment mix. The effect of non-cost policies aims to capture any legislation or
rule demanding no new investment in a speci�ed source for a percentage of the global energy needs.

Model Structure

Figure 4.1  Electric Supply Capacity Model Structure



Market Clearing and Utilization
The Market and Utilization sector uses a market clearing theory to balance supply and demand given costs,
prices, and assumed market attributes. In summary, the model includes the following:

Extraction capacity and price of extracted fuels.
Supply/demand/price of each fuel for nonelectric consumption. The variable costs include the extracted
fuel price contracted over a period, adjusted by any taxes or subsidies.
Supply/demand/price of electricity, where the variable costs include the extracted fuel price marked up by a
ratio and contracted over a period, adjusted by any taxes or subsidies.
For each delivered fuel for nonelectric consumption, the recent market price of each fuel relative to the
reference market price of each fuel adjusts the actual demand from that at normal utilization. For each fuel,
the normal demand is the sum of the long term demand for nonelectric consumption accounting for noncost
phase-out policies.
For electricity, the recent market price relative to reference market price adjusts the actual demand from
that at normal utilization.

Market Price of Extracted Fuel

The market price of extracted fuels depends on the utilization and price effects as well as the cost of extraction,
which depends on technological cost improvements and overheating of capacity, and resource constraints, all
described in Supply.

Market Clearing and Utilization
The market price and utilization of electricity and delivered fuels for nonelectric consumption depends on the
long term demand, the supply capacity, and market price adjustments. Utilization of each source is a function of
unit margins and the short term supply curves, de�ned by generalized logistics functions, but may be reduced by
noncost phase-out policies. For nonelectric delivered fuels, the market price of each fuel is equivalent to the
revenue for it. For electricity, the revenue is the market price of electricity less the transmissions and distribution
(T&D) costs. The consumer pays the T&D costs, defaulted to $0.02/kWh, to the utility regardless of the
electricity generator. T&D costs are not subject to the learning or breakthroughs; they are assumed to remain
constant throughout the simulation (see EIA 2017 and Fares & King 2016). The generator's unit margin may also
be increased according to qualifying credits, explained below in Clean Electricity Standards. Capacity of extracted
fuels is utilized for electric generation and also processed for delivered fuels for nonelectric carriers.

Tax and Subsidy Adjustments to Costs

https://www.eia.gov/todayinenergy/detail.php?id=32812
https://energy.utexas.edu/sites/default/files/UTAustin_FCe_TDA_2016.pdf


A carbon tax on fuels and source taxes reduce the margin and pro�t of that source; conversely, source subsidies
increase the margin and pro�t of that source. Source taxes/subsidies can be applied either to capital costs or to
variable costs, the fraction of which is determined by Fraction of fuel source adjustment for capital  and
Fraction of elec source adjustment for capital . For nonelectric consumption, the default is that all

taxes/subsidies apply to the variable costs, whereas for electric consumption, the default is that they apply to
capital costs. Carbon taxes, which depend on the carbon density of the fuel, increase the variable costs of that
fuel. For fuel-generated electricity, the adjustment to the cost of fuel also depends on the thermal e�ciency of
that source.

Parameter values for source subsidy/tax inputs range from highly subsidized, de�ned to be 60% of the marginal
cost in 2020, to very highly taxed, de�ned to be 200% of the marginal cost in 2020. For fuel-generated electricity,
the percent thresholds apply to the marginal costs excluding those for fuel. Bounds are set to policy-relevant
limits, which are source-dependent.

Clean Electricity Standards

Besides taxes and subsidies, market-driven credits or certi�cates are another mechanism to drive electricity to
achieve target standards. En-ROADS allows the user to choose the sources to be counted as qualifying, the
target percent of qualifying sources of electricity produced, the duration over which to achieve the target, and the
base cost of the credits or certi�cates. The costs of buying certi�cates and potential �nes for not reaching the
standard are paid for by all sources, whereas only qualifying sources reap the revenue.

Model Structure

Figure 5.1  Fuel Cost and Price Structure



Figure 5.2  Market Clearing (Supply-Demand Balance) for Electricity



Land Use, Land Use Change, and Forestry
En-ROADS endogenously calculates the land use, land use change, and forestry (LULUCF) net C emissions by
explicitly keeping track of each hectare of different land types; the �uxes of changing land types and the use of
each land type due to land and energy demands and policies; and the co�ow of carbon on the land. The terrestrial
biosphere carbon (TBC) cycle accounts for these anthropogenic carbon emissions as well as natural emissions
from biomass and soil respiration and releases as CH , accounted in the CH  cycle, and primary productivity of
each land type.

The TBC cycle re�ects that cutting down trees releases carbon and stops them from absorbing CO  from the
atmosphere. While harvesting crops also releases carbon, the approximately annual or faster regrowth time
allows the related carbon release to be considered net zero.

En-ROADS models different kinds of land that can be converted into the others, and the biomass and soil carbon
on the land that can accumulate or be released. We have four different land uses: Forest, Agriculture, Other,
Tundra; with Forest further divided into three cohorts (Young, 0-50 years; Medium, 50-100 years; and Mature,
100+ years) and whether or not it resulted from afforestation (9 total land uses).

Each type of land has carbon �ows:

From the atmosphere to biomass (primary production through photosynthesis)
From biomass to soil (decomposition, etc.)
From soil and biomass to the atmosphere (respiration, decay, burning)
When land use changes, some of the carbon stays on the land and some is released to the atmosphere

Figure 6.1  Land and Carbon Stock and Flow
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We cut trees or remove biomass for two reasons: we want the material or we want the land (or both). The
material is involved in concepts like bioenergy, wood products, and forest degradation. Needing the land means
concepts like deforestation, afforestation, land use change, and agriculture. Those are the policies and
scenarios where you can intervene in En-ROADS with each area described below.

Drivers of Deforestation and Degradation

Land that is converted from forest becomes either Farmland (driven by needs of the food system and bioenergy)
or Other Land (non-farm deforestation). With six subcategories of forest (NonAF/AF, Young/Medium/Mature),
the model assumes that the fraction of deforestation to farmland and to other is proportional to the land area of
each to the total forest land.

The primary driver of deforestation has historically been to expand farmland, the need for which is driven by the
food system drivers but also by the fraction of farmland expansion that comes from forest. Farmland needs that
cannot come from forest comes from Other Land. Farm conversion from other land (mostly grasslands and
scrub, but also deserts, barren, urban, etc.) has less effect on the carbon cycle than does deforestation. The
fraction of farmland expansion that comes from forest is �xed (at 0.6) in the base case based on historical land
use changes.

Non-farm deforestation is exogenous, a simple Baseline scenario based on the LUH data and projections. This
re�ects forest clearing for development and mining.

The fraction of farmland expansion coming from forests, and the rate of deforestation to other land may be
modi�ed by policy inputs. Those inputs come in two modes: from the main Deforestation slider, the input is a
percent per year increase or decrease, which results in �rst order growth or decay relative to the Baseline
scenario. In advanced settings, the user can set a year to halt which results in a linear transition to zero in the
target year. The policies form reduction rates which are accumulated in a single stock called Relative
deforestation  which in turn multiplies each component of deforestation rate.

Forests are also harvested and allowed to regrow. The regrowing process can remove carbon from the
atmosphere and is therefore often considered carbon-neutral. However, it can take decades to repay the carbon
debt incurred with forest harvesting. All forests can be harvested for bioenergy or for wood products. The
proportion of total harvest from each forest category is a function of available carbon on each category relative to
the total carbon on all forests. A third element that is linked to the main deforestation slider is degradation of
mature forest, i.e., forest of average age greater than 100 years. We include it because forest policies often link
deforestation and degradation, as in REDD+. Although the terrestrial biosphere structure tracks removal and
regrowth of biomass on all forest types, we limit the policies and graphs to degradation of mature forests.
Harvest of mature forests is driven by the bioenergy structure, above, along with harvest for non-fuel wood. Non-
fuel wood demand (lumber, paper, etc.) is a constant for each region times the population for each region.
Structure exists for including a GDP per person effect but the sensitivity is zero.

The policy to directly control degradation is identical to the ones controlling the rate of non-farm deforestation
(relative to Baseline) and farm expansion (fraction of expansion from forest), only it affects the fraction of
mature forest available for harvest. The main deforestation slider increases or decreases degradation by a
percent per year; the advanced view sets a year to halt degradation of mature forests, which also reduces the
availability of wood for bioenergy and non-fuel harvest.



There are also command and control-type policies for land conservation; these limits do not address the drivers
of deforestation or degradation, but rather prevent those drivers from affecting forest or mature forest. These
policies represent the "year to halt" each component.

Food and Agriculture Drivers

Expanding farmland is a major driver of deforestation and other land use change. We start with the assumption
that land will expand to meet food needs. We measure food in kilograms per year, and limit it to two types: crops
and animal products. We model a single global food demand and a single global agriculture system. The
variables involved in the causality from people to food to land are:

Figure 6.2  Food and Agriculture Drivers

Food per person is modeled as a simple function of GDP per person, �tted to the FAO food balance data, and
approaches an upper limit of 900 kg/person/year. There are no user controls for food per person, based on our
assumption of meeting food needs.

Percent animal product is the fraction of global diet met by milk, meat, eggs, etc. Consumption of animal product
in kg/person/year is a function of global average GDP per person, calibrated to FAO food balance data, from
which the fraction is calculated. Under baseline GDP scenarios, it rises from its current value (24%) to a peak of
30% as GDP rises, set by the Food from livestock  slider. The current consumption of milk, meat, etc. by region
has range from 15% (China and Other Developing B) to over 40% (US), and not strictly arranged by GDP per
person; traditional diets play a large part. It is still expected that global animal product consumption will grow over
time as countries develop, but En-ROADS allows for users to vary that value between 10% to 40% to be reached
in 2100.



Food waste is a single stock that is by default constant at 30%. 30% is the widely quoted but poorly studied value
of the amount of food harvested but not consumed, anywhere along the value chain. Anecdotally, it is mostly
between farm and market in developing countries, and retail or post-consumer in wealthy countries. If you
change the Food waste  setting, the new value is reached in 2100 with a linear path.

Food consumption for both crop and animal products is the product of population, food per person, and percent
from livestock. Accounting for waste gives production needed to meet that consumption. An additional factor
Livestock feed multiplier  gives how much plant matter (feed, fodder, grazing vegetation, etc.) it takes to

produce each kilogram of animal product. For now that is �xed at 10 kg plant / kg animal product. Farmland
desired is then those needs for plant matter divided by yield.

Yield is the global aggregate production of crops, animal feed, pasture vegetation, etc., per year per hectare. The
crop yield structure is designed to (1) have Baseline food demand result in land use changes matching LUH
projections (2) allow for other yield growth scenarios (3) allow a feedback from temperature to yield (4) have
lower yield growth if pressure on food demand is low.

In the data model and supporting �les, we �nd the regression �t to FAO food balance data and use that along with
the baseline assumptions to �nd baseline food demand. The rate of change in implied yield gives a baseline for
the potential yield increase over time. The potential is modi�ed up or down by the action of the Crop yield growth
slider. The closure of the gap between the potential yield and maximum yield reduces the crop yield growth. The
default of the maximum yield set to 2.5 times the 2020 yield implies a comparable growth rate observed since
1960.

The two endogenous reductions to crop yield are low food pressure and high temperature change. Food pressure
requiring farming intensity to exceed normal intensity, defaulted to be 0.7, increases the rate of crop yield growth;
the converse is true of farming intensity less than normal. It is measured by the ratio of crops needed relative to
the crops produced under normal intensity of the farmland, defaulted to 0.7. The integral of crop yield growth is
then reduced by the Effect of temperature on crop yield, defaulted to the mean of 4% decrease per degree C,
consistent with the Zhao et al (2017) used for the impact table. However, the user may adjust this strength in
Assumptions.

Farmland Expansion and Contraction

Farmland expansion occurs when the ratio of crops produced to the crops that could be produced at maximum
intensity given the current farmland area exceeds the normal farmland intensity. Conversely, if that ratio is less
than the normal farmland intensity, then what is not needed is converted to forest land via natural regrowth,
whereas the rest degrades to other land.



Other Land Decreases and Increases

Afforestation policy, i.e. the action depending on the Afforestation slider of En-ROADS, is implemented as the
conversion of other land to forest land, since the land identi�ed to be available for afforestation, excludes
existing forests and agricultural land and falls into the other land category. Afforestation, as a policy
implementation, is formulated based on a user-de�ned fraction of the full potential of afforestable land, and its
delayed conversion to afforested land, which results in the land �ux of Land afforestation rate. This �ux is then
incorporated into the land use change module as a chain of conversions from the other land to young forests and
then aging to medium and mature forests. Deforestation from afforested land to farmland and other land affects
the e�cacy of this policy. The model captures historical regrowth of other land to nonAF young forest. Other land
also decreases with farmland expansion, as only a fraction of the expansion comes from forests.

Model Structure

Figure 6.3  Land Use Change Structure



Figure 6.4  Crop Yield Structure



Terrestrial Biosphere Carbon Cycle
The terrestrial biosphere carbon (TBC) cycle re�ects the primary productivity of biomass, removing carbon from
the atmosphere as it grows, the natural and anthropogenic carbon �uxes from biomass and soil stocks, the �ux
from biomass carbon to soil carbon, and the �uxes of biomass and soil carbon as methane to the methane cycle.
These �uxes by land type are summed together to feed into the carbon cycle.

The Goudriaan and Ketner (1984) and IMAGE models have detailed biospheres, partitioned into leaves, branches,
stems, roots, litter, soil, and charcoal. To simplify the model, these categories are aggregated into stocks of
biomass (leaves, branches, stems, roots) and soil (litter, soil). First-order time constants were calculated in C-
ROADS assuming equilibrium in 1850 for each category land type and C-ROADS region and aggregated across
regions for use in En-ROADS. Charcoal is neglected due to its long lifetime. The results are reasonably consistent
with other partitionings of the biosphere and with the one-box biosphere of the Oeschger model (Oeschger,
Siegenthaler et al., 1975; Bolin, 1986).

Net Primary Productivity (NPP)

The natural ability of biomass to sequester carbon from the atmosphere provides a key sink in the carbon cycle.
NPP is the gross primary productivity minus the autotrophic respiration. Forest, agricultural land, other land, and
tundra all have primary production and respiration. Furthermore, all primary production is affected by the level of
CO  in the atmosphere (the fertilization effect). Carbon stored in biomass and soil is also released through
heterotrophic aerobic and anaerobic respiration, which increases with higher temperature (increased �re, pests,
decay). With the major exception of forests, all land reaches equilibrium quickly. Accordingly, calibrating in C-
ROADS, the initial unit NPP of each non-forest land type is set assuming equilibrium in 1850. The �ux into the
biomass is equal to the �ux out from aerobic and anaerobic respiration and transfer to soil is divided by the land
area.

Unlike the other land types, forests have the most complex growth and the most biomass, so are treated in the
most detail. Trees take up carbon through photosynthesis / primary production, and lose it through respiration,
�re, being eaten by animals, decay, etc. Some of the carbon lost from biomass ends up in the soil through
decomposition. The net of these carbon �ows is that forests grow in an S-shaped pattern, slowly at �rst, at a
high rate in middle age, and then reach an equilibrium where very high primary production is balanced by very high
respiration. The growth curves, primary production, respiration and soil transfer rates are initialized and calibrated
with Land Use Harmonization (LUH) and OSCAR modeling output, and compared against Global Carbon Budget
(2023), Houghton and Nassikas (2017), and SSP IAMs. The process involves determining the regional growth
curves in C-ROADS and then aggregating to global inputs for En-ROADS.
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Initialize carbon in stocks of forest, farmland, tundra, and other biomass and soil from OSCAR 1850 output
by 10 regions, disaggregated and re-aggregated to �t our 7 regions.

Initialize fractional rate of biomass and soil C respiration and transfer biomass to soil from OSCAR 1850
output.

Determine forest unit NPP Richard’s growth curve parameters for each of 7 regions.

Set Test Pulse scenario in which all LULUCF is set to 0 EXCEPT for a pulse of 95 of mature forest in
1900; when Test Pulse = 1, all fertilization and temperature feedbacks are turned off.
Set unit NPP inputs within ranges determined from forest analyses and assure unit NPP curves are
reasonable given the types of forests in each region, e.g., more tropical in India and Other Developing A
and B and more temperate in Developed.
Iteratively adjust parameters to achieve near equilibrium prior to pulse and assure regrowth is
reasonable given the types of forests in each region.
Determine forest unit NPP Richard’s growth curve parameters for global aggregation.

Create global TBC cycle in C-ROADS

Using land �uxes as sum of regional �uxes, set unit NPP inputs within ranges determined from forest
analyses such that the global forest carbon aligns with sum of regional forest carbon.

vTest pulse
vTest Baseline

Unit NPP from all other land types remain constant
Use global rates calculated from 1850 output of OSCAR model of biomass to soil transfer, biomass to
atm respiration and soil to atmosphere respiration.
Iteratively adjust parameters to achieve comparable global results as from C-ROADS.



Figure 7.1  Regrowth After Instant Deforestation

Figure 7.2  Baseline Forest Biomass

Increasing forest biomass carbon from 1980s despite decreasing forest area due to fertilization effect.
Supported by data, e.g., Table 1 in Xu et al. (2021) shows that tropical moist forests is the only biome that has
had a decrease from 2000 to 2019, but that is outweighed by the forest C increase everywhere else. "Globally,
woody carbon stocks are increasing slowly with an average annual gain of 0.23 ± 0.09 PgC year−1."

https://www.science.org/doi/10.1126/sciadv.abe9829


Figure 7.3  Net Primary Productivity versus Biomass Density

Figure 7.4  Biomass Density Growth over Time



The logarithmic relationship of the uptake of C by the biosphere re�ects the fact that the uptake is less than
proportional to the increase in atmospheric C concentration (Wullschleger, Post et al., 1995). This formulation,
though commonly used, is not robust to large deviations in the atmospheric concentration of C. As the
atmospheric concentration of C approaches zero, net primary production approaches minus in�nity, which is not
possible given the �nite positive stock of biomass. As the concentration of C becomes very high, net primary
production can grow arbitrarily large, which is also not possible in reality. Accordingly, we instead use a CES
production function, which exhibits the following: 1) the slope around the preindustrial operating point is
controlled by the biostimulation coe�cient, which can be loosely interpreted as CO 's share of plant growth (at
the margin), with the balance due to other factors like water and nutrients; 2) there is a �nite slope at zero CO ,
such that there are no singularities; and 3) it controls saturation at high CO .

NPP = net primary production
NPP  = reference net primary production

β  = biostimulation coe�cient
C  = C in atmosphere

C  = reference C in atmosphere
CO ⋅sat = coe�cient that determines the rate of CO  saturation

Natural Losses

Carbon stored in biomass and soil is lost due to �re and microbial/fungal respiration. Rates of the release from
each carbon stock is increased with increasing temperature change.

Carbon in both biomass and soil is also released as natural methane, entering into the methane cycle as such.
The fractional rates of these releases also increase with temperature change. We assume a linear relationship,
likely a good approximation over the typical range for warming by 2100. The sensitivity parameter, set by the user,
governs the strength of the effect. The default sensitivity of 1 yields the average value found in Friedlingstein et
al., 2006. Additionally, the rate of methane from tundra increases as temperature exceeds a threshold,
representing a tipping point in the model.

Anthropogenic Carbon Fluxes

Land Use, Land Use Change, and Forestry explains the land use changes and uses. Carbon emitted from LUC is a
co�ow of each land change, driven by the Fraction biomass C emitted and Fraction soil C emitted. The remaining
carbon, i.e., 1 minus that fraction, drives the carbon transferred to the new land type.

Net removals from regrowth after harvesting and from afforestation account for the net primary productivity
(NPP) and also for the carbon lost back to the atmosphere from aerobic and anaerobic respiration and to the
carbon and methane cycles, respectively. In order to isolate the removals due to land changes, the model
simultaneously calculates the removals for the counterfactual scenario of no land changes. Corresponding
co�ows, aerobic and anaerobic respiration, and transfers from biomass to soil drive the TBC cycle without
harvesting and regrowth. Accordingly, the net removals due to land changes are taken as difference in net
removals with and without the land changes.
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The net carbon emissions from LULUCF are the gross emissions, i.e., the LULUCF released to the atmosphere
from biomass and soil, minus the net removals due to the land changes.

A reduction in converting forests and in harvesting mature trees leads to a reduction in net emissions from
LULUCF, eventually meaning negative emissions. Part of this is because demand for bioenergy from wood falls;
the young and medium forests cannot make up for the reduced availability of biomass from mature forests,
which makes wood more expensive. Increases from the other sources of biomass (crops and waste) only
partially cover the reduction from wood.

Bioenergy

The amount of bioenergy used and the investment in bioenergy infrastructure is endogenously determined by
cost and other attractiveness, along with all other energy sources. Within bioenergy, there are three feedstocks
(wood, energy crops, and waste) likewise determined by cost. The basic structure is market clearing / market
share / logit structures for both electricity and thermal use. The various components have independent learning
curves.

Bioenergy markets interact with the land structure because �ow constraints, and therefore costs, depend on the
carbon and land available in the appropriate land use areas. In turn, harvesting for bioenergy removes the
indicated carbon, converting any age of forest into new forest with low carbon content, or increasing the desired
farmland.

The costs, learning curves, sensitivities and other parameters are set to be reasonable compared to IEA WEO
scenarios.

LULUCF net emissions are reported in two ways, including those resulting from bioenergy and also excluding
those when reporting bioenergy emissions are reported separately. Regardless of reporting, bioenergy emissions
and resulting net removals are appropriately included in the TBC cycle and included as such in the main carbon
cycle. Although reported as part of the energy emissions, bioenergy net emissions are not included with the
Global C energy and industry emission �ux of carbon into the atmosphere.

Emissions from bioenergy are a function of the fraction coming from each feedstock, i.e., wood, crops, and
waste/other non-crop fast-growing feedstocks. The carbon intensity of each feedstock (GtonsC/EJ) and the
fraction of bioenergy emissions that are captured through bioCCS before entering the atmosphere also affect
emissions into the atmosphere. The available bioenergy feedstock can constrain the extracted bioenergy supply.

All forests supply bioenergy and wood for non-fuel products according to their carbon content. To isolate the
removals due to harvesting for bioenergy, the model also calculates the counterfactual land areas and terrestrial
biosphere carbon resulting from all �uxes excluding harvest and regrowth for bioenergy.



Model Structure

Figure 7.5  Biosphere Carbon Stock and Flow Structure



Emissions
Energy drives the primary source of greenhouse gases (GHGs), of which CO  is the largest fraction of total CO
equivalent annual emissions. However, En-ROADS models the emissions more generally of well-mixed GHGs,
including CO , CH , N O, PFCs, SF , and HFCs, the source of each potentially from energy production, energy-
consuming capital, agriculture, and waste. Initial emissions of each GHG that comes from each source are taken
from 1990 data from PRIMAP 2021, assuming Agriculture includes PRIMAP MAG and LU categories, and Waste
includes PRIMAP Waste and Other categories. Land use CO  emissions are a function of the land use changes
and uses as de�ned in Terrestrial Biosphere Carbon Cycle.

Emissions from Energy Production

Energy production emissions include those from production capacity, production capacity construction, and from
production use. Each of these sources applies to extracted fuel, delivered fuel, and electricity generation from
each power source. Emissions from energy use depend on the energy intensity, the e�ciency of, losses from,
and energy produced by each source, i.e., primary energy. The emissions intensity is a measure of GHGs emitted
per amount of energy produced. For bioenergy, this is a calculated variable that is a function of the terrestrial
biosphere dynamics and the fraction of bioenergy from crops. Energy production capacity emissions default to
CH ; energy production construction emissions default to CO ; and energy production use emissions default to
CO , CH , and N O. However, each phase of production is a potential source of each GHG, subject to the user’s
assumptions.

Emissions from Energy Consuming Capital
Emissions from energy consuming include those from the end use capital, the construction of that capital, and
the use of that capital. Consumption capital capacity and use emissions default primarily to PFCs, SF , and
HFCs. However, industry end use capital also emits CH  and N O. The construction of energy consuming capital
defaults to CO  emissions only. Despite those defaults, each phase of end use capital is a potential source of
each GHG, subject to the user’s assumptions. While policy levers can affect all end use emissions, there is also
the option to phase out HFCs only, to capture the Kigali Amendment of the Montreal Protocol which calls for
HFCs to be phased out to 80% reduction of 2012 levels by 2047.

Emissions from Agriculture

Emissions from agriculture depends on the area of farmland and the use of that land. Food demand increases
with population and GDP per capita. The livestock fraction of diet increases the crops needed because of the
feed for the livestock. Moreover, the CH  and N O intensity of farmland is greater for livestock than for crops.
Crop yield, i.e., the crops produced per hectare of land, also increases in time, thereby requiring less land for the
same crop production. The use of crops for bioenergy also puts pressure on farming.
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Actions in the food and agriculture system also affect emissions from agriculture. We model simple emission
factors, the ratio between production and emission. There are separate factors for methane and nitrous oxide
and for crops for food and animal products, in kilogram of gas per ton of production. All four emission factors
have been declining historically and are expected to decline in the future, with baseline rates calibrated to FAO
data and SSP projections. The rate of change can increase or decrease based on the methane and other gas
sliders, representing actions like better feed and manure management, fertilizer runoff reduction and so on.

Figure 8.1  Drivers of Agriculture Emissions

Both production emissions intensity of production affect methane and nitrous oxide emissions.

Emissions from Waste
Emissions from waste depend on the production ratio, i.e., how much is produced, and the GHG intensity of that
which is produced. While waste sources default to emit only CH  and N O, they are also a potential source of
each GHG, subject to the user’s assumptions.
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Model Structure

Figure 8.2  Emissions Accounting Structure



Carbon Dioxide Removal (CDR)
The carbon dioxide removal (CDR) submodel governs the storage of carbon by biological, chemical, and industrial
means. It includes both CDR proper, and Carbon Capture and Storage (CCS). CDR refers to methods that take CO
from the atmosphere and sequester it as carbon somewhere else. The CDR methods we include are
afforestation, soil carbon management, biochar, enhanced mineralization, direct air carbon capture and storage
(DACCS), and bioenergy with carbon capture and storage (BECCS). CCS refers to methods that capture carbon
from a fuel before or after combustion, so that less CO  is released to the atmosphere. CCS is modeled for fossil
fuels (coal and gas) and bioenergy. There is overlap between CCS, BECCS, and DACCS including common
technologies, storage sites, economic drivers, and infrastructure.

CCS and CDR methods are model at various degrees of detail. The amount and timing of removals are either set
by, calibrated to, or grounded in a synthesis of literature, most frequently the Royal Society Report.

The carbon �ows calculated by CCS and CDR structures are passed to the Carbon Cycle model and �ow into
biomass, soil, or sequestration stocks as appropriate. Each storage stock is subject to a leak or loss rate,
adjustable in assumptions. In addition to carbon �ows, this sector calculates the expenditures, energy needs,
material �ows, and land needs to show the impacts of relying on these techniques.

CDR Methods

Afforestation includes the land deliberately planted with trees as a means of carbon sequestration. Additional
new forests might occur endogenously if farmland is abandoned, but that is not counted as "afforestation".
Afforestation is speci�ed by the user as a percent of the maximum area available for planting, adjustable as an
assumption, and potentially limited by the area of Other Land available. Once the land is speci�ed as afforested
land, the growing forests sequester and store carbon according to the NPP and respiration drivers de�ned in
Terrestrial Biosphere Carbon Cycle.

Agricultural soil carbon refers to techniques that increase the amount of carbon in farmland soil. It is speci�ed as
a percent of the peak rate of CO  removal, adjustable in the assumptions. The farmland carbon transfer
parameters in the Terrestrial Biosphere Carbon Cycle submodel are then adjusted to achieve that rate, potentially
limited by land availability. The assumption on soil carbon loss rate adjusts the parameters of the Terrestrial
Biosphere Carbon Cycle as well.

Biochar refers to turning biomass into charcoal then burying the carbon in farmland as a soil amendment. It is
speci�ed as a percent of the peak rate of CO  removal, adjustable in the assumptions, subject to a loss rate.

Mineralization is a chemical process, also called enhanced weathering, where certain kinds of rock are spread
onto farmland, where they absorb CO . This also has a bene�cial effect on agriculture if the soil is too acidic.
The user input sets the percent of suitable farmland (adjustable in the assumptions) and the rate of CO
absorption the amount of rock applied and the speci�c absorption potential. Gross absorption is adjusted by a
loss rate (default zero) and the emissions from the energy used to mine, grind and transport the necessary rock.
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Direct air carbon capture and storage (DACCS) (sometimes called DAC) is a function of the capture equipment
and the capacity to transport the captured CO , which is shared with CCS. The desired DACCS capacity is a
function of the target percent of maximum Gtons CO  per year, which results in funding for DACCS infrastructure.
DACCS capacity model has orders, completions and retirement, subject to delays and limits on construction
capability. The amount of CO  captured is the lower of DACCS capacity and available CO  transport capacity. The
cost of DACCS declines over time with learning, but can increase if CO  transport and storage constraints are
exceeded. The energy required to operate DACCS equipment increases the energy demand for electricity,
potentially increasing emissions. The gross capture by DACCS is stored in geological formations; an estimate of
CO  emitted by its energy demand is subtracted to plot net removals.

Bioenergy with CCS (BECCS) is modeled under the CCS section below. It responds to price signals, i.e. carbon
price, rather than having a user input under the CDR section.

Carbon Capture and Storage (CCS)

Both fossil and bioenergy CCS are modeled as stocks of transport capacity (shared with DACCS), and individual
capture capacities for each fuel, for industry and electric sectors. Completion is subject to both development and
construction delays, with a limit on overall growth rates as construction capability itself takes time to construct.
The time delays on transport capacity are assumed to ste the limit on deploying capture capacity as well. The
amount of CO  captured for each fuel and application is the least of: CO  created in combustion, capture
capacity, and available transport capacity. If transport capacity is limiting, it is shared in proportion to capture
capacity.

Figure 9.1  CCS Transport Infrastructure
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CCS capacity adjusts over time to the amount indicated by a simple economics model. The available revenue for
CCS can come from a carbon price or the incentive of a clean electricity standard. The market is de�ned by price
sensitivity and a reference demand - the demand for CCS when its cost equals available revenue. There is
additional exogenous construction of CCS representing the historical and expected construction for R&D,
demonstration projects and the like, calibrated to historical CCS data. The cost of CCS capture and transport
equipment costs, which follow endogenous learning curves, and the cost of energy assumed to equal the market
price of electricity from the Market Clearing sector. Costs also increase as constraints on storage and transport
capacity are reached. Within the overall market size, the different fuels and applications of CCS compete on
price and remaining potential.

Figure 9.2  CCS Market Structure



Well-Mixed Greenhouse Gas Cycles

Carbon Cycle

Introduction

The carbon cycle sub-model is adapted from the FREE model (Fiddaman, 1997). While the original FREE structure
is based on primary sources that are now somewhat dated, we �nd that they hold up well against recent data.
Calibration experiments against recent data and other models do not provide compelling reasons to adjust the
model structure or parameters, though in the future we will likely do so.

Other models in current use include simple carbon cycle representations. Nordhaus’ DICE models, for example,
use simple �rst- and third-order linear models (Nordhaus, 1994, 2000). The �rst-order model is usefully simple,
but does not capture nonlinearities (e.g., sink saturation) or explicitly conserve carbon. The third-order model
conserves carbon but is still linear and thus not robust to high emissions scenarios. More importantly for
education and decision support, neither model provides a recognizable carbon �ow structure, particularly for
biomass.

Socolow and Lam (2007) explore a set of simple linear carbon cycle models to characterize possible emissions
trajectories, including the effect of procrastination. The spirit of their analysis is similar to ours, except that the
models are linear (sensibly, for tractability) and the calibration approach differs. Socolow and Lam calibrate to
Green’s function (convolution integral) approximations of the 2x CO  response of larger models; this yields a
calibration for lower-order variants that emphasizes long-term dynamics. Our calibration is weighted towards
recent data, which is truncated, and thus likely emphasizes faster dynamics. Nonlinearities in the C-ROADS
carbon uptake mechanisms mean that the 4x CO  response will not be strictly double the 2xCO  response.

Structure

The adapted FREE carbon cycle is an eddy diffusion model with stocks of carbon in the atmosphere, biosphere,
mixed ocean layer, and three deep ocean layers. The model couples the atmosphere-mixed ocean layer
interactions and net primary production of the Goudriaan and Kettner and IMAGE 1.0 models (Goudriaan and
Ketner 1984; Rotmans 1990) with a 5-layer eddy diffusion ocean based on (Oeschger, Siegenthaler et al., 1975)
and a 2-box biosphere based on (Goudriaan and Ketner 1984).

The global terrestrial biosphere carbon cycle �uxes and initial biomass and soil stocks are the sum of those by
land type as de�ned in Terrestrial Biosphere Carbon Cycle.

The interaction between the atmosphere and mixed ocean layer involves a shift in chemical equilibria (Goudriaan
and Ketner, 1984). CO  in the ocean reacts to produce HCO–

3  and CO=
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C  = C in mixed ocean layer
C  = reference C in mixed ocean layer
C  = C in atmosphere

C  = reference C in atmosphere
ζ = buffer factor

The atmosphere and mixed ocean adjust to this equilibrium with a time constant of 1 year. The buffer or Revelle
factor, ζ, is typically about 10. As a result, the partial pressure of CO  in the ocean rises about 10 times faster
than the total concentration of carbon (Fung, 1991). This means that the ocean, while it initially contains about 60
times as much carbon as the preindustrial atmosphere, behaves as if it were only 6 times as large.

The buffer factor itself rises with the atmospheric concentration of CO  (Goudriaan and Ketner, 1984; Rotmans,
1990) and temperature (Fung, 1991). This means that the ocean’s capacity to absorb CO  diminishes as the
atmospheric concentration rises. This temperature effect is another of several possible feedback mechanisms
between the climate and carbon cycle. The fractional reduction in the solubility of CO  in ocean falls with rising
temperatures. Likewise for the temperature feedback on C �ux to biomass, we assume a linear relationship,
likely a good approximation over the typical range for warming by 2100. The sensitivity parameter that governs
the strength of the effect on the �ux to the biomass also governs the strength of the effect on the �ux to the
ocean. For both effects, the default sensitivity of 1 yields the average values found in Friedlingstein et al., 2006.

ζ = buffer factor
ζ  = reference buffer factor
δ  = buffer CO  coe�cient
C  = C in atmosphere

C  = reference C in atmosphere

The deep ocean is represented by a simple eddy-diffusion structure similar to that in the Oeschger model, but
with fewer layers (Oeschger, Siegenthaler et al., 1975). Effects of ocean circulation and carbon precipitation,
present in more complex models (Goudriaan and Ketner, 1984; Björkstrom, 1986; Rotmans, 1990; Keller and
Goldstein, 1995), are neglected. Within the ocean, transport of carbon among ocean layers operates linearly. The
�ux of carbon between two layers of identical thickness is expressed by:

F  = carbon �ux from layer m to layer n
C  = carbon in layer k
e = eddy diffusion coe�cient
d = depth of layers
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The effective time constant for this interaction varies with d, the thickness of the ocean layers. To account for
layer thicknesses that are not identical, the time constant uses the mean thickness of two adjacent layers. The
following table summarizes time constants for the interaction between the layers used in C-ROADS, which
employs a 100 meter mixed layer, and four deep ocean layers that are 300, 300, 1300, and 1800 meters,
sequentially deeper. Simulation experiments show there is no material difference in the atmosphere-ocean �ux
between the �ve-layer ocean and more disaggregate structures, including an 11-layer ocean, at least through the
model time horizon of 2100.

Table 10.1  Effective Time Constants for Ocean Carbon Transport

Layer Thickness Time Constant

100 meters 1 year

300 meters 14 years

300 meters 20 years

1300 meters 236 years

1800 meters 634 years

The sum of carbon removals by non-land based CDR, de�ned in Carbon Dioxide Removal, is another �ux from the
carbon in the atmosphere, which increases the stock of carbon sequestered. Carbon captured from CCS also
increases that stock. The sum of carbon from that stock that is lost re-enters the atmosphere.

Other greenhouse gases

Other GHGs included in CO equivalent emissions

En-ROADS explicitly models other well–mixed greenhouses gases, including methane (CH ), nitrous oxide (N O),
and the �uorinated gases (PFCs, SF , and HFCs). PFCs are represented as CF -equivalents due to the
comparably long lifetimes of the various PFC types. HFCs, on the other hand, are represented as an array of the
nine primary HFC types, each with its own parameters. The structure of each GHG’s cycle re�ects �rst order
dynamics, such that the gas is emitted at a given rate and is taken up from the atmosphere according to its
concentration and its time constant. Initialization is based on 1990 levels of data from GISS for CH  and N O and
according to C-ROADS (2023) for F-gases. The remaining mass in the atmosphere is converted, according to its
molecular weight, to the concentration of that gas. The multiplication of each gas concentration by the radiative
coe�cient of the gas yields its instantaneous radiative forcing (RF). This RF is included in the sum of all RFs to
determine the total RF on the system.

For those explicitly modeled GHGs, the CO  equivalent emissions of each gas are calculated by multiplying its
emissions by its 100-year Global Warming Potential. Time constants, radiative forcing coe�cients, and the GWP
are taken from the IPCCs Fifth Assessment Report (AR5) Working Group 1 Chapter 8. (Table 8.A.1. Lifetimes,
Radiative E�ciencies and Metric Values GWPs relative to CO ).
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In addition to the anthropogenic emissions considered as part of the CO  equivalent emissions, CH , N O, and
PFCs also have a natural component. The global natural CH  emissions are from the anaerobic respiration of
biomass, soil, and oceans. The global natural N O emissions are based on MAGICC output, using the remaining
emissions in their “zero emissions” scenario. The global natural PFC emissions are calculated by dividing
Preindustrial mass of CF  equivalents by the time constant for CF . The units of each gas are: MtonsCH ,
MtonsN O-N, tonsCF , tonsSF , and tonsHFC for each of the primary HFC types. To calculate the CO  equivalent
emissions of N O, the model �rst converts the emissions from MtonsN O-N/year to Mtons N O/year.

The sensitivity of this release defaults to 0.1% per degree Celsius over a threshold, defaulted to 2 Degrees
Celsius; the user may change these assumptions.

Montréal Protocol Gases

Rather than explicitly modeling the cycles of the Montreal Protocol (MP) gases, whose emissions are dictated by
the MP, En-ROADS uses the calculated RF for historical and projected concentrations, inputted as a data variable.

Cumulative Emissions

En-ROADS calculates the cumulative CO  with the initial value taken as the 1990 C-ROADS value starting in 1870.
Cumulative emissions are determined through the simulation. The trillionth ton is a marker of cumulative
emissions above which a two degree future is far less likely. Budgets are also presented from 2011 and from
2018, based on IPCC thresholds.
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Model Structure

Figure 10.1  En-ROADS Carbon Cycle Structure

Figure 10.2  En-ROADS Other GHGs Cycle Structure



Climate

Introduction
Like the carbon cycle, the climate sector is adapted from the FREE model, which used the DICE climate sector
without modi�cation (Nordhaus 1994). The DICE structure in turn followed Schneider and Thompson (1981).

The model has been recast in terms of stocks and �ows of heat, rather than temperature, to make the physical
process of accumulation clearer to users. However, the current model is analytically equivalent to the FREE and
DICE versions. While FREE and DICE used exogenous trajectories for all non-CO  radiative forcings, this version
adds endogenous forcings from all well-mixed GHGs, i.e., CO , CH , N O, PFCs, SF , and each HFC type.

Structure

The climate is modeled as a �fth-order, linear system, with three negative feedback loops. Two loops govern the
transport of heat from the atmosphere and surface ocean, while the third represents warming of the deep ocean.
Deep ocean warming is a slow process, because the ocean has such a large heat capacity. If the deep ocean
temperature is held constant, the response of the atmosphere and surface ocean to warming is �rst-order.
Temperature change is a function of radiative forcing (RF) from greenhouse gases and other factors, feedback
cooling from outbound longwave radiation, and heat transfer from the atmosphere and surface ocean to the deep
ocean layer.

T = temperature of surface and deep ocean boxes
Q = heat content of respective boxes
R = heat capacity of respective boxes

RF = radiative forcing
F  = outgoing radiative �ux

F  = heat �ux to deep ocean

λ = climate feedback parameter
τ = heat transfer time constant
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Radiative forcing from CO  is logarithmic of the atmospheric CO  concentration, but also dependent on the N O
concentration (IPCC AR6, 2023; NOAA, 2023). Forcing from CH  and N O is less than the sum of RF from each
individually to account for interactions between both gases; CO  concentrations also affect forcings from N O.
Forcing from each F-gas is the product of its concentration and its radiative forcing coe�cient; the total forcings
of F-gases is the sum of these products, as are the forcings from MP gases derived. The sum of other forcings,
which include those from aerosols (black carbon, organic carbon, sulfates), tropospheric ozone, defaults to an
exogenous time-varying parameter. The values use a composite of AR6 history 1750-2019 and their projections
for SSP4 6.0 through 2100. The equilibrium temperature response to a change in radiative forcing is determined
by the radiative forcing coe�cient, κ, and the climate feedback parameter, λ. Equilibrium sensitivity to 2xCO eq
forcing is 3°C in the base case. The plot of that relationship is shown as Figure 11.1.

T  = equilibrium temperature
C  = atmospheric CO  concentration

C  = preindustrial atmospheric CO  concentration
κ = radiative forcing coe�cient
λ = climate feedback parameter

Figure 11.1  Equilibrium Temperature Change versus CO  Concentration
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Model Structure

Figure 11.2  Heat Transfer Model Structure



Sea Level Rise
Sea Level Rise (SLR) is modeled by extending the semi-empirical approach proposed by Vermeer and Rahmstorf
(2009) in a way to accommodate the water impoundment by arti�cial reservoirs and to experiment with higher
levels of contribution to SLR from ice sheet melting in Antarctica and Greenland than already assumed. The
model is estimated from historical data 1900-2021, a period with low levels of warming that therefore may
underestimate future sea level rise from the faster-than-historical rates of melt of the Greenland and Antarctic
ice sheets. “Contribution to SLR from Ice Melt in Antarctica by 2100” and “Contribution to SLR from Ice Melt in
Greenland by 2100” sliders allow users to capture these effects. Sliders are initialized with the mid-range
estimates for the contribution of ice sheet melting in Antarctica/Greenland in the IPCC AR6 report.

Model Structure

Figure 12.1  En-ROADS Sea Level Rise Model Structure



Damage to GDP
In En-ROADS, economic growth can be reduced from what it would otherwise be, due to the effects of climate
change on human activity. En-ROADS uses temperature change as a proxy for the multiple effects of shifting
patterns of temperature, rainfall, disease, etc., that might affect the economy. Economists refer to these effects
as the "damage function" and measure the net present value of potential damage as the social cost of carbon.

Literature on damage function

In the scienti�c literature, aggregate economic impact of climate change is expressed as a fraction of ‘annual
income’, global GDP or GDP per capita. It is formulated as an increasing function of global mean temperature
change from preindustrial times. Extensive research into the literature shows the vast disparity between
estimates of damage at varying temperature changes. See Damage Function References.

We assessed the very low estimates (Nordhaus, 2007, 2013, and 2016; Weitzman, 2012), ranging from 1% at 2°C,
2-3% at 3°C, and 4-9% at 4°C, and 6-25% at 5°C, to be unrealistic.

The four sources we deemed most credible and covering a range of rates of increasing damage with increasing
temperature change are:

Burke et al. (2018)
Burke et al. (2015)
Dietz and Stern (2015)
Howard and Sterner (2017)

Burke et al. (2015) estimate the macro impacts of climate change from micro impacts based on an extensive
empirical study (e.g. daily temperature effect on labor productivity per person scaled up to annual and global).
They conclude that, taking nonlinearities into account, the damage is much higher than the earlier estimates,
which is 21% of GDP per capita by 2100 on average. Wealthy countries are not unaffected. Their estimates take
different responses by countries into account. In the ‘pooled response’ formulation, rich and poor countries are
assumed to respond identically to the temperature change. Short run estimates account for 1 year of
temperature, whereas long run estimates account for 5 years of temperature change.

In their 2018 study where they focus on the impact of mitigation targets, they estimate 15%–25% loss in GDP per
capita by 2100 for 2.5–3°C warming, and more than 30% for 4°C. Their damage function is widely used in recent
studies that analyze the social cost of carbon (Ricke et al., 2018; Taconet et al., 2020; Glanemann et al., 2020).
Dietz and Stern follow the formulation of Weitzman (2012), yet assume 50% damage at 4°C.

Through a meta-analysis, Howard and Sterner (2017) determined quadratic equations to de�ne the damage
function with varying assumptions:

Preferred model for non-catastrophic damage
Preferred model for total (non-catastrophic plus catastrophic) damages
Preferred model for total damages plus productivity



Modelling the damage function in En-ROADS

The literature has a variety of damage function forms and values. In En-ROADS, we would like to capture all
these, and to allow users explore a wider variety of damage values while keeping the model robust. Accordingly,
there are �ve options in the model, four presets using the equations to re�ect the chosen literature and one to
customize the damage function with a logistic equation with user speci�ed parameters. There is also an
additional option to turn off the damage entirely.

For each source, the model uses the exact formula given, or determined if not provided, to capture the preset.
Burke et al (2015 and 2018) do not de�ne a damage function but instead show curves of damage vs. temperature
change. Accordingly, we digitized the graphs and assessed regression analyses Ω with cubic, quadratic, and
linear equations for Ω = Damage function = 1-1/(1+D). Cubic regression, i.e., Ω = 1-1/(1+𝛼*T+𝛽*T2+𝛾*T𝛿)), best
captures the �t for all relevant temperatures. Unlike Dietz and Stern (2015) and Burke et al (2015 and 2018),
Howard and Sterner (2017) de�ne Ω = D as noted below.

Burke et al, 2018 SR Pooled
𝛼 = 0.3079; 𝛽 = -0.0532; 𝛾 = 0.004; 𝛿 = 3

Burke et al, 2015 LR Pooled
𝛼 = 0.3074; 𝛽 = 0.0144; 𝛾 = 0.0168; 𝛿 = 3

Dietz and Stern, 2015
𝛼 = 0; 𝛽 = 1/18.82; 𝛾 = 4𝛿; 𝛿 = 6.754

Howard and Sterner, 2017
Ω = D “Preferred model for total damages plus productivity”
Ω = 1.145 * T2

For the customized damage function, we use a logistic function formulation with three parameters, L, k and x ,
where L is the maximum damage, k refers to the steepness of the damage curve and x  is the in�ection point.

This allows for a function form that captures the damage function shapes and values presented in the literature
and allows parameterization based on easily understandable user inputs (sliders) such as “the damage % at 2°C
warming” and/or the “maximum damage” saturates at the maximum damage value entered by the users or at
100% so that the damage and GDP values are kept in realistic ranges for extreme temperatures.

0
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L

1 + e−k(T (t)− )x0
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Social Cost of Carbon

Social cost of carbon (SCC) is the marginal cost of emitting one extra tone of CO  in a given year. It is a
commonly used metric in US administration and climate policy debate. En-ROADS shows the SCC in the present
year (i.e. 2023) calculated according to the emission trajectory in the baseline scenario, and the subsequent
economic damage of this emission trajectory which depends on the user inputs for the damage function, Social
Discount Rate, and climate sensitivity assumptions.

To calculate SCC in En-ROADS, we adopt the approach followed by United States Interagency Working Group
(IWG) (Greenstone et al., 2013), which calculated the SCC values used by the US government. This approach
involved simulating the integrated assessment models until 2300, since atmospheric CO  has a very long lifetime
and the economic damages from today’s emissions are observed for centuries. Therefore, even though the
normal time horizon of En-ROADS is until 2100, for SCC calculation it is extended until 2300. In other words, all
scenarios displayed by En-ROADS cover the horizon through 2100, yet SCC is calculated based on two additional
simulations run upon demand (when users click on the SCC table on UI) through 2300. For the post-2100 period in
these simulations to 2300, we make the following assumptions following IWG:

IWG assumes that population growth rate declines linearly after 2100, reaching zero in the year 2200, hence
a stable population after 2100. In the En-ROADS population stabilizes by 2100 already in the baseline
scenario.
GDP per capita growth rate is assumed to decline linearly after 2100, from whatever value it takes in 2100
based on user inputs and damage, reaching zero in the year 2300.
The rate of decline in the Carbon intensity of GDP (CO  emissions from energy / GDP) between 2090 and
2100 is maintained from 2100 through 2300. To formulate this assumption,

We calculate the average rate of change of the Carbon intensity of GDP in 2090-2100.
We compute the Post-2100 carbon intensity of GDP according to this new constant rate of change.
We calculate the post-2100 CO  emissions from energy are as the multiplication of this Post-2100
carbon intensity of GDP * Global GDP.

Net land use CO  emissions (LULUCF net emissions) are assumed to decline linearly after 2100, from any
value they take in a scenario in 2100, reaching zero in the year 2200.
Non-CO  GHG emissions (that of CH , N O, SF , PFC and HFC) are assumed to follow the same rate of
change as CO  emissions. In other words, the post-2100 trajectory of all these GHG gases are set to follow
the trajectory of CO .
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With these assumptions for the 2100-2300 period, SCC is calculated with the following three main steps:

Step 1: Run a baseline damage scenario through 2300 and calculate the present value of damage

With any user-set assumptions for the economic impact of temperature rise (damage function) and other
climate system assumptions, the damage, i.e. the percentage of global GDP loss (D) is calculated as in Equation
1 above. From there, annual Global GDP Loss (L) is calculated as the corresponding fraction of Global GDP
(Gross World Product, GWP), Equation 2. These losses over time are discounted to the present year with the
variable Present Value of Global GDP Loss (PVL) based on the user-set Social Discount Rate (r) as in Equation 3,
where t  is the present year. Present Value of Cumulative Damage until time is the accumulation of PVL as
denoted in Equation 4 where t  and t  are the initial and �nal time, respectively, i.e. 1990 and 2300.

Step 2: Run an emission shock scenario through 2300 and calculate the present value of damage

The same scenario as in Step 1 is simulated with an additional 1 Gton of CO  emissions in the present year. In
other words, the trajectory of CO  emissions is perturbed with the pulse of 1 GtonCO  yr  in the present year.

Step 3: Calculate SCC as the marginal damage between the two simulations

The difference between the Present Value of Cumulative Damage by 2300 in the two simulations yields the
social cost of carbon. This formulation is denoted in Equation 5:

CPVL (t ) = Present Value of Cumulative Damage in the baseline damage scenario in the �nal time (2300)
CPVL (t ) = Present Value of Cumulative Damage in the emission shock scenario in the �nal time (2300)

e = amount of the emission shock (1 GtonCO  yr )

p

0 f
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CPVL(t)

= D(t) ⋅GWP(t)

= L(t) ⋅
1

(1 + r)MAX{0,t− }tp

= PVL(t)dt∫
tf

t0

(2)

(3)

(4)

2

2 2
-1

SCC( ) =tp
CPV ( ) −CPV ( )L2 tf L1 tf

e
(5)

1
f

2
f

2
-1



Damage Function References

IPCC. (2014). Summary for policymakers. in Climate Change 2014: Impacts, Adaptation, and Vulnerability.
Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change (eds. Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D.
Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S.
MacCracken, & P.R. Mastrandrea, and L.L. White) 1–32 Cambridge University Press.
Nordhaus, W. D. (2007). Accompanying notes and documentation on development of DICE-2007 model:
Notes on DICE-2007. v8 of September 21, 2007. N. Hav. CT Yale Univ.
Ackerman, F. & Stanton, E. (2012). Climate risks and carbon prices: Revising the social cost of carbon. Econ.
Open-Access Open-Assess. E-J. 6, 10.
Nordhaus, W. & Sztorc, P. (2013). DICE 2013R: Introduction and user’s manual.
Tol, R. S. (2009). The economic effects of climate change. J. Econ. Perspect. 23, 29–51.
Nordhaus, W. D. (2017). Revisiting the social cost of carbon. Proc. Natl. Acad. Sci. 114, 1518–1523.
Keen, S. (2020). The appallingly bad neoclassical economics of climate change. Globalizations 1–29.
Weitzman, M. L. (2012). GHG targets as insurance against catastrophic climate damages. J. Public Econ.
Theory 14, 221–244.
Hanemann, W. M. (2008). What is the economic cost of climate change?
Dietz, S. & Stern, N. (2015). Endogenous growth, convexity of damage and climate risk: how Nordhaus’
framework supports deep cuts in carbon emissions. Econ. J. 125, 574–620.
Burke, M., Hsiang, S. M. & Miguel, E. (2015). Global non-linear effect of temperature on economic
production. Nature 527, 235–239.
Burke, M., Davis, W. M. & Diffenbaugh, N. S. (2018). Large potential reduction in economic damages under
UN mitigation targets. Nature 557, 549–553.
Ricke, K., Drouet, L., Caldeira, K. & Tavoni, M. Country-level social cost of carbon. Nat. Clim. Change 8, 895–
900 (2018).
Taconet, N., Méjean, A. & Guivarch, C. (2020). In�uence of climate change impacts and mitigation costs on
inequality between countries. Clim. Change 1–20.
Glanemann, N., Willner, S. N. & Levermann, A. (2020). Paris Climate Agreement passes the cost-bene�t test.
Nat. Commun. 11, 1–11.
Greenstone, M., Kopits, E. & Wolverton, A. (2013). Developing a Social Cost of Carbon for US Regulatory
Analysis: A Methodology and Interpretation. Review of Environmental Economics and Policy 7, 23–46.



Other Impacts

Air Quality–PM2.5
The air quality sector simulates annual global emissions of PM2.5. En-ROADS estimates annual global
emissions from three sources: energy generation (electricity), energy generation (non electricity), and other
sources (including agriculture and open �res).

Figure 14.1  Sources of Particulate Pollution

Ambient PM2.5 is considered the leading environmental health risk factor globally and is a top 10 risk factor in
countries across the economic development spectrum. PM2.5 is �ne particulate matter as de�ned by the mass
per cubic meter of air of particles with a diameter of <=2.5 micrometers (µm).

The components of PM2.5 are solid and liquid particles small enough to remain airborne and are de�ned as two
forms:

1. Solids/liquid particles directly emitted to the atmosphere (primary PM).
2. Solids/liquid particles formed from gaseous precursors (secondary PM).

Components of PM2.5 may include (some of) the following:

Carbons
Sulfates
Nitrates
Chlorides
Iron
Calcium
Other Organics (solid/liquid)



Sources of PM2.5 in En-ROADS – Overview

PM2.5 is generated from multiple sources. The chart was from research Global Sources of Fine Particulate
Matter: Interpretation of PM2.5 Chemical Composition Observed by SPARTAN using a Global Chemical Transport
Model (Weagle et al 2018).

En-ROADS aggregates these sources into the following sources:

1. Energy generation a. Electricity production b. Energy (non electricity) production
2. Non-energy generation a. agriculture, b. open �res, c. other sources.

PM2.5 from Energy Generation

En-ROADS calculates energy generated PM2.5 emissions by applying an emissions factor (EF) (in million metric
tons (Mtons) emitted per exajoule (EJ)) for each fuel source to the annual rate of energy produced (in EJ/year).

EFs for fuel sources are calculated in several input-output models. En-ROADS applies EFs estimated from
analysis by the International Institute for Applied Systems Analysis (IIASA). The EFs for coal, oil, and gas were
calculated using the GAINS model (IIASA) to estimate emissions/year from G20 countries/regions and then
averaged. Countries included the United States, several EU countries, India (2 regions) and China (3 different
regions). The EF for bio was calculated from the RAINS model (IIASA).

Estimates for EFs were not signi�cantly different between electricity and non electricity (which includes
industry). En-ROADS applies the same EFs to electricity and non electricity. Users can vary the EF assumption
across a range (by source), with a range of 50% to 150% of the base EF (shown in the table below).

Table 14.1  Emission Factors by Fuel

Source EF (Mtons/EJ)

Coal 0.1200

Oil 0.0050

Gas 0.0001

Bio 0.0400

PM2.5 from Non Energy Sources

Non-energy sources of PM2.5 are estimated by applying a per capita EF (Mtons/year/billion people) to global
population (billion people). The per capita EF is set at the start of the scenario year.

In 2015, non-energy sources of PM2.5 accounted for 35% total PM2.5 emissions. En-ROADs uses that 35% as an
estimate of the non-energy contribution to total prior to 2015.

EmissionRate[Fuel] = EF [Fuel] ×ElectricityProduction[Fuel]



The per capita PM2.5, is calculated in 2015 (Scenario Year) by dividing global non-energy PM2.5 (Mtons/year) by
global population in billions (2015). For 2015 and remaining simulated years, non-energy PM2.5 (Mtons/year) is
calculated by multiplying global population (billions) by the 2015 emissions factor.

pH

The pH sector of En-ROADS re�ects the empirical function presented by Bernie et al. (2010). As the atmospheric
concentration in the atmosphere increases, the pH of the ocean decreases by a third order response.

Other Impacts from Temperature Change
The continuous increase in the global temperature is expected to cause a variety of impacts on ecology and
human activities – in addition to sea level rise, increased ocean acidity and the loss in global GDP discussed in
previous sections. More frequent and intense extreme weather events, major reduction in global crop yield and
biodiversity loss are some examples of the other anticipated impacts of climate change. En-ROADS simulates
�ve categories of such climate impact metrics (some categories containing more than one metric):

Population Exposed to Sea Level Rise
Probability of Ice-free Arctic Summer
Decrease in Crop Yield from Temperature
Species Losing More than 50% of Climatic Range
Additional Deaths from Extreme Heat

Building on the �ndings of �ve peer-reviewed climate studies, we formulated the relationship between global
mean temperature (as well as sea level rise) and these metrics (primarily through interpolation and
extrapolation).



Initialization, Calibration, Model Testing
En-ROADS initializes and calibrates to available historical data, primarily provided by the following sources:

Energy and Emissions

Energy Information Administration (EIA) (2019)
International Energy Agency (IEA) World Energy Balances and World Energy Statistics (2023)
Energy Institute (EI) Statistical Review of World Energy (2023)
Global Carbon Budget (2023) (CO  Energy Emissions and Land Use Change Emissions)
PRIMAP 2.4.2 (2023) (Non-CO  GHG Emissions only)
Houghton and Nassikas (2017) (CO  Land Use only)

Land Areas

Land Use Harmonization (LUH2) data (Hurtt et al., 2018)

GHG Concentrations, Radiative Forcings, Temperature Change, Sea Level Rise

National Oceanic and Atmospheric Administration (NOAA) concentrations (2024) and radiative forcings
(2023)
Goddard Institute for Space Studies (GISS) GISTEMP4 Global Mean Estimates based on Land and Ocean
Data 1880-2023 (2024)
Met O�ce Hadley Centre HadCRUT5.0.1.0 temperature 1850-2023 (2024)
National Aeronautics and Space Administration (NASA) satellite sea level rise (2023)

En-ROADS calibrates to projected values provided by the following sources:

International Energy Agency (IEA) WEO (2023)
Network for Greening the Financial System (2023)

GCAM 6.0 (U.S.)
MESSAGEix-GLOBIOM 1.1-M-R12 (IIASA)
REMIND-MAgPIE 3.2-4.6 (Germany)

SSP Version 2.0 scenarios (2018 - Available at: https://tntcat.iiasa.ac.at/SspDb)
Netherlands Environmental Assessment Agency (PBL). Integrated Model to Assess the Global
Environment (IMAGE): Detlef van Vuuren, David Gernaat, Elke Stehfest
International Institute for Applied Systems Analysis (IIASA). Model for Energy Supply Strategy
Alternatives and their General Environmental Impact - GLobal BIOsphere Management (MESSAGE-
GLOBIOM): Keywan Riahi, Oliver Fricko, Petr Havlik
National Institute for Environmental Studies (NIES). Asia-Paci�c Integrated Model (AIM): Shinichiro
Fujimori
Paci�c Northwest National Laboratory (PNNL). Global Change Assessment Model (GCAM): Kate Calvin
and Jae Edmonds
Potsdam Institute for Climate Impact Research (PIK). REMIND-MAGPIE: Elmar Kriegler, Alexander
Popp, Nico Bauer
European Institute on Economics and the Environment (EIEE). World Induced Technical Change Hybrid-
GLobal BIOsphere Management (WITCH-GLOBIOM): Massimo Tavoni, Johannes Emmerling

2

2

2

https://tntcat.iiasa.ac.at/SspDb


“Calibration and validation comparisons.xlsx” and “Calibration and validation comparisons.pptx” provide output
and �gures demonstrating the strong �t to history and other modeling groups’ projections. Key comparison
measures include GDP, total and source energy use and cost measures, GHG emissions and concentrations, and
temperature change. Noteworthy, comparisons of primary energy of renewables depend on conversion
assumptions which vary dramatically between sources.

Our default settings are guided primarily by history, WEO Current Policies, and NGFS Current Policies projections.

Land Calibration

The land use change module is calibrated in the regional C-ROADS based on the Land Use Harmonization (LUH2)
data prepared for the Climate Research Program Coupled Model Intercomparison Project (CMIP6). Our output for
each land type strongly aligns with historical data. However, our projections suggest more farmland and less
forest than do the LUH projections and those of the NGFS models. The differences are due to our accounting for
the temperature effect on reducing crop yield, which translates to more farmland expansion to meet food
demands. The other models do not account for that feedback.

Response to Actions

Importing as data variables, En-ROADS also uses various scenario projections for model validation. Accordingly,
there are necessary �les, generated from data models, which must accompany the model. We test the model
against the NGFS projections for their 6 scenarios. We set population and GDP per capita controls to follow the
given NGFS trajectories and exogenously use the average of the models’ carbon price values for the given NGFS
scenario, and assess the model output versus the IAMs' results.

An important caveat is that these other IAMs' assumptions other than carbon pricing are unknown. Accordingly,
we force CDR and other GHG action to align with the NGFS projections for carbon removal and other GHG
emissions. Reliably, for each scenario, the model captures the key dynamics of the NGFS models.

Although outdated now, we ran comparable assessments against all of the Shared Socioeconomic Pathway
(SSP) of the IPCC's AR5 scenarios. Comparisons were against the output of 6 models for 5 SSP scenarios, each
with up to 6 radiative forcing options, i.e., 1.9, 2.6, 3.4, 4.5, 6.0, and Baseline. Reliably, for each SSP storyline and
RF level, the model captures the key dynamics of the SSP models.

Sensitivity Analyses

Extreme Testing

Sensitivity analyses provide insight into model robustness. Using a Latin grid, two tests for extreme conditions,
one with standard controls and another with advanced controls, varied key actions. The extreme values for some
variables are beyond the ranges available on the app but are tested for model robustness in Vensim. Output
measures for each simulation were exported as a .csv �le and assessed using an Excel workbook created to
con�rm reasonable model behavior.



Table 15.1  Sensitivity Analysis De�nition (see Table 15.2 for normal slider ranges)

Variable Min Max

Basic Controls

Source subsidy delivered coal tce 0 1000

Source subsidy delivered oil boe 0 1000

Source subsidy delivered gas MCF 0 20

Source subsidy delivered bio boe 0 1000

Source subsidy renewables kWh -0.1 0

Carbon tax initial target 0 1000

Annual improvement to energy efficiency of new capital stationary -1 5

Annual improvement to energy efficiency of new capital transport -1 5

Electric carrier subsidy stationary 0 100

Electric carrier subsidy with required comp assets 0 100

Percent available land for afforestation 0 100

Non afforestation Percent of max CDR achieved 0 100

Advanced Controls

Damage function on 0 1

No new coal 0 100

No new oil 0 100

No new gas 0 100

Utilization adjustment factor delivered coal 0 100

Utilization adjustment factor delivered oil 0 100

Utilization adjustment factor delivered gas 0 100

*



Table 15.2  Actual En-ROADS slider ranges (some values in Table 15.1 go beyond these limits)

Variable Min Max

Basic Controls

Source subsidy delivered coal tce 0 110

Source subsidy delivered oil boe 0 100

Source subsidy delivered gas MCF 0 5

Source subsidy delivered bio boe 0 30

Source subsidy renewables kWh -0.03 0

Carbon tax initial target 0 250

Electric carrier subsidy stationary 0 50

Electric carrier subsidy with required comp assets 0 50

Output variables for the sensitivity analyses include:

Final energy by each carrier for each end use[EndUseSector, Carrier]

Total Primary Energy Demand

Primary energy demand of coal

Primary energy demand of oil

Primary energy demand of gas

Primary energy demand of bio

Primary energy demand of nuclear

Primary energy demand of renewables

Primary energy demand of hydro

Market price of electricity

Market price of delivered fuels for nonelec carriers[Primary Fuels]

Adjusted cost of energy per GJ

CO  emissions from energy

Temperature change from 1850

2



Varying Key Assumptions

Additionally, using random triangular distribution, another set of sensitivity analyses tested the effects of varying
key assumptions with actions. Results indicate that, regardless of these assumptions, the relative effect these
actions have on the system are robust.
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