En-ROADS Technical Reference

References🔗

Climate Interactive Data Files: Data.vdfx, Created from En-ROADS data model (Data.mdl). Global-RS GHG.vdfx, from C-ROADS.mdl. EnROADS-Calc.vdfx, Created from (En-ROADS-RS.mdl). NGFS-Scenarios.vdfx, Created from NGFS data model, dated 11/11/2023. SSP v2 Global Data, Created from SSP v2 data model, dated 11/08/2019.

Ackerman, F. & Stanton, E. (2012). Climate risks and carbon prices: Revising the social cost of carbon. Econ. Open-Access Open-Assess. E-J. 6, 10.

Albertus, P. (2020). Long-Duration Electricity Storage Applications, Economics, and Technologies, 2020 https://www.cell.com/joule/pdf/S2542-4351(19)30539-2.pdf.

Bernie, D., Lowe, J., Tyrrell, T., Legge, O. (2010). Influence of Mitigation Policy on Ocean Acidification. Geophysical Research Letters, 37:L15704.

Björkström, Anders. (1986). One-Dimensional and Two-Dimensional Ocean Models for Predicting the Distribution of CO2 Between the Ocean and the Atmosphere. 10.1007/978-1-4757-1915-4_14.

Energy Institute. (2023). Statistical Review of World Energy June 2024 Statistical_Review_of_World_Energy_2023.xls.

Burke, M., Hsiang, S. M. & Miguel, E. (2015). Global non-linear effect of temperature on economic production. Nature 527, 235–239.

Burke, M., Davis, W. M. & Diffenbaugh, N. S. (2018). Large potential reduction in economic damages under UN mitigation targets. Nature 557, 549–553.

Caldecott, Ben, Lomax, Guy, & Workman, Max. (2015). Stranded Carbon Assets and Negative Emission Technologies (Working Paper). University of Oxford Stranded Assets Programme. Retrieved from http://www.smithschool.ox.ac.uk/research-programmes/stranded-assets/Stranded%20Carbon%20Assets%20and%20NETs%20-%2006.02.15.pdf

Covington, H. and R. Thamotheram. (2015). The Case for Forceful Stewardship (Part 1): The Financial Risk from Global Warming. Available at SSRN: https://ssrn.com/abstract=2551478 or http://dx.doi.org/10.2139/ssrn.2551478

Dietz, S. & Stern, N. (2015). Endogenous growth, convexity of damage and climate risk: how Nordhaus’ framework supports deep cuts in carbon emissions. Econ. J. 125, 574–620.

EDGAR (Emissions Database for Global Atmospheric Research) Community GHG Database, a collaboration between the European Commission, Joint Research Centre (JRC), the International Energy Agency (IEA), and comprising IEA-EDGAR CO2, EDGAR CH4, EDGAR N2O, EDGAR F-GASES version 7.0, (2022) European Commission, JRC (Datasets). The complete citation of the EDGAR Community GHG Database is available in the 'Sources and References' section.

Energy Institute. (2023). Statistical Review of World Energy, 72nd Edition. https://www.energyinst.org/__data/assets/pdf_file/0004/1055542/EI_Stat_Review_PDF_single_3.pdf.

Fares, R.L. and C.W. King. (2016). Trends in Transmission, Distribution, and Administration Costs for U.S. Investor Owned Electric Utilities. White Paper UTEI/2016-06-1. https://energy.utexas.edu/sites/default/files/UTAustin_FCe_TDA_2016.pdf.

Fiddaman, T. (1997). Feedback complexity in integrated climate-economy models. https://dspace.mit.edu/handle/1721.1/10154

Fiddaman, T., L.S. Siegel, E. Sawin, A.P. Jones, and J. Sterman. (2023). C-ROADS Technical Reference. https://www.climateinteractive.org/c-roads-technical-reference

Food and Agriculture Organization of the United Nations (FAO). FAOStat Database. https://www.fao.org/faostat/en/#data.

Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Barbero, L., Bates, N. R., Becker, M., Bellouin, N., Decharme, B., Bopp, L., Brasika, I. B. M., Cadule, P., Chamberlain, M. A., Chandra, N., Chau, T.-T.-T., Chevallier, F., Chini, L. P., Cronin, M., Dou, X., Enyo, K., Evans, W., Falk, S., Feely, R. A., Feng, L., Ford, D. J., Gasser, T., Ghattas, J., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Joos, F., Kato, E., Keeling, R. F., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger, A., Lan, X., Lefèvre, N., Li, H., Liu, J., Liu, Z., Ma, L., Marland, G., Mayot, N., McGuire, P. C., McKinley, G. A., Meyer, G., Morgan, E. J., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K. M., Olsen, A., Omar, A. M., Ono, T., Paulsen, M., Pierrot, D., Pocock, K., Poulter, B., Powis, C. M., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J., Séférian, R., Smallman, T. L., Smith, S. M., Sospedra-Alfonso, R., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tans, P. P., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., van Ooijen, E., Wanninkhof, R., Watanabe, M., Wimart-Rousseau, C., Yang, D., Yang, X., Yuan, W., Yue, X., Zaehle, S., Zeng, J., and Zheng, B.: Global Carbon Budget 2023, Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, 2023

Fung, I. et al. (1991). Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res., 96, 13033-13065, doi:10.1029/91JD01247.

Gaunt, J. L., & Lehmann, J. (2008) Energy Balance and Emissions Associated with Biochar Sequestration and Pyrolysis Bioenergy Production. Environmental Science & Technology, 42(11), 4152–4158. https://doi.org/10.1021/es071361i

Glanemann, N., Willner, S. N. & Levermann, A. (2020). Paris Climate Agreement passes the cost-benefit test. Nat. Commun. 11, 1–11.

Global Carbon Budget (GCB). (2022) Pierre Friedlingstein, Michael O’Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, and many others. Global Carbon Budget 2022, Earth Syst. Sci. Data, 2022. https://globalcarbonbudget.org/wp-content/uploads/GCB2022_ESSD_Paper.pdf.

Goddard Institute for Space Studies (GISS) (2024) GISTEMP4 Global Mean Estimates based on Land and Ocean Data 1880-2023.

Goudriaan, J. and Ketner, P. (1984) A Simulation Study for the Global Carbon Cycle, Including Man's Impact on the Biosphere. Climatic Change, 6:167-192.

Greenstone, M., Kopits, E. & Wolverton, A. (2013). Developing a Social Cost of Carbon for US Regulatory Analysis: A Methodology and Interpretation. Review of Environmental Economics and Policy 7, 23–46.

Gütschow, J.; Pflüger, M. (2023): The PRIMAP-hist national historical emissions time series v2.4.2 (1750-2021). zenodo. doi:10.5281/zenodo.7727475.

Gütschow, J., Jeffery, L., Gieseke, R., Gebel, R., Stevens, D., Krapp, M., Rocha, M. (2016). The PRIMAP-hist national historical emissions time series, Earth Syst. Sci. Data, 8, 571-603, https://dx.doi.org/10.5194/essd-8-571-2016.

Hanemann, W. M. (2008). What is the economic cost of climate change?.

HDR GSFC. 2021. Global Mean Sea Level Trend from Integrated Multi-Mission Ocean Altimeters TOPEX/Poseidon, Jason-1, OSTM/Jason-2, and Jason-3 Version 5.1. Ver. 5.1 PO.DAAC, CA, USA. https://doi.org/10.5067/GMSLM-TJ151. Dataset accessed 07/12/2023. https://archive.podaac.earthdata.nasa.gov/podaac-ops-cumulus-protected/MERGED_TP_J1_OSTM_OST_GMSL_ASCII_V51/GMSL_TPJAOS_5.1_199209_202303.txt

Houghton, R. A., and A. A. Nassikas (2017). Global and regional fluxes of carbon from land use and land cover change 1850–2015, Global Biogeochem. Cycles, 31.doi:10.1002/2016GB005546.

Humpenöder, F., Popp, A., Dietrich, J. P., Klein, D., Lotze-Campen, H., Markus Bonsch, Müller, C. (2014). Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environmental Research Letters, 9(6), 064029. https://doi.org/10.1088/1748-9326/9/6/064029

Hunter, Chad and Penev, Michael and Reznicek, Evan P. and Eichman, Joshua and Rustagi, Neha and Baldwin, Samuel F., Techno-Economic Analysis of Long-Duration Energy Storage and Flexible Power Generation Technologies to Support High Variable Renewable Energy Grids. Available at SSRN: https://ssrn.com/abstract=3720769 or http://dx.doi.org/10.2139/ssrn.3720769

Hurtt, G. C., L. Chini, R. Sahajpal, S. Frolking, B. L. Bodirsky, K. Calvin, J. C. Doelman, J. Fisk, S. Fujimori, K. K. Goldewijk, T. Hasegawa, P. Havlik, A. Heinimann, F. Humpenöder, J. Jungclaus, Jed Kaplan, J. Kennedy, T. Kristzin, D. Lawrence, P. Lawrence, L. Ma, O. Mertz, J. Pongratz, A. Popp, B. Poulter, K. Riahi, E. Shevliakova, E. Stehfest, P. Thornton, F. N. Tubiello, D. P. van Vuuren, X. Zhang. (2020). Harmonization of Global Land-Use Change and Management for the Period 850-2100 (LUH2) for CMIP6. Geoscientifc Model Development. DOI: 10.5194/gmd-2019-360; https://luh.umd.edu/

International Energy Agency (IEA). (2023). World Energy Outlook (WEO). World data for final and primary energy by source and sector, and CO2 emissions. https://www.iea.org/weo/

IEA. 2023. World Energy Balances and World Energy Statistics Datasets. 1990-2021. https://www.iea.org/data-and-statistics/data-product/world-energy-statistics-balances.

IEA. 2023. World Energy Balances. https://www.iea.org/reports/world-energy-balances-overview

Intergovernmental Panel on Climate Change (IPCC). 2018. Special Report - Global Warming of 1.5o C.

Intergovernmental Panel on Climate Change (IPCC). (2023): Summary for Policymakers. In: Climate Change 2023: Synthesis Report.A Report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, (in press).

IPCC. (2021): Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press, doi:10.1017/9781009157896.

IPCC. (2021): AR6 WG1, Chapter 5. Canadell, J.G., P.M.S. Monteiro, M.H. Costa, L. Cotrim da Cunha, P.M. Cox, A.V. Eliseev, S. Henson, M. Ishii, S. Jaccard, C. Koven, A. Lohila, P.K. Patra, S. Piao, J. Rogelj, S. Syampungani, S. Zaehle, and K. Zickfeld, 2021: Global Carbon and other Biogeochemical Cycles and Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 673–816, doi: 10.1017/9781009157896.007.

IPCC. (2021): AR6 WG1, Chapter 6. Szopa, S., V. Naik, B. Adhikary, P. Artaxo, T. Berntsen, W.D. Collins, S. Fuzzi, L. Gallardo, A. Kiendler-Scharr, Z. Klimont, H. Liao, N. Unger, and P. Zanis, 2021: Short-Lived Climate Forcers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 817–922, doi: 10.1017/9781009157896.008.

IPCC. (2021): AR6 WG1, Chapter 7. Forster, P., T. Storelvmo, K. Armour, W. Collins, J.-L. Dufresne, D. Frame, D.J. Lunt, T. Mauritsen, M.D. Palmer, M. Watanabe, M. Wild, and H. Zhang, 2021: The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 923–1054, doi: 10.1017/9781009157896.009.

IPCC. (2021): AR6 Technical Summary. Arias, P.A., N. Bellouin, E. Coppola, R.G. Jones, G. Krinner, J. Marotzke, V. Naik, M.D. Palmer, G.-K. Plattner, J. Rogelj, M. Rojas, J. Sillmann, T. Storelvmo, P.W. Thorne, B. Trewin, K. Achuta Rao, B. Adhikary, R.P. Allan, K. Armour, G. Bala, R. Barimalala, S. Berger, J.G. Canadell, C. Cassou, A. Cherchi, W. Collins, W.D. Collins, S.L. Connors, S. Corti, F. Cruz, F.J. Dentener, C. Dereczynski, A. Di Luca, A. Diongue Niang, F.J. Doblas-Reyes, A. Dosio, H. Douville, F. Engelbrecht, V. Eyring, E. Fischer, P. Forster, B. Fox-Kemper, J.S. Fuglestvedt, J.C. Fyfe, N.P. Gillett, L. Goldfarb, I. Gorodetskaya, J.M. Gutierrez, R. Hamdi, E. Hawkins, H.T. Hewitt, P. Hope, A.S. Islam, C. Jones, D.S. Kaufman, R.E. Kopp, Y. Kosaka, J. Kossin, S. Krakovska, J.-Y. Lee, J. Li, T. Mauritsen, T.K. Maycock, M. Meinshausen, S.-K. Min, P.M.S. Monteiro, T. Ngo-Duc, F. Otto, I. Pinto, A. Pirani, K. Raghavan, R. Ranasinghe, A.C. Ruane, L. Ruiz, J.-B. Sallée, B.H. Samset, S. Sathyendranath, S.I. Seneviratne, A.A. Sörensson, S. Szopa, I. Takayabu, A.-M. Tréguier, B. van den Hurk, R. Vautard, K. von Schuckmann, S. Zaehle, X. Zhang, and K. Zickfeld, 2021: Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 33−144, doi:10.1017/9781009157896.002.

IPCC. (2021): AR6 Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3−32, doi:10.1017/9781009157896.001.

IRENA (2020). Renewable Power Generation Costs in 2019, International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Jun/IRENA_Power_Generation_Costs_2019.pdf

IRENA (2020). Taylor, Michael. Energy subsidies: Evolution in the global energy transformation to 2050, International Renewable Energy Agency, Abu Dhabi.

Keen, S. (2020). The appallingly bad neoclassical economics of climate change. Globalizations 1–29.

Keller, A.A., Goldstein, R.A. (1995). Oceanic transport and storage of carbon emissions. Climatic Change 30, 367–395. https://doi.org/10.1007/BF01093853

Koornneef, Joris, van Breevoort, Pieter, Hamelinck, Carlo, Hendriks, Chris, Hoogwijk, Monique, Koop, Klaas, & Koper, Michele. (2011). Potential for Biomass and Carbon Dioxide Capture and Storage. EcoFys for IEA GHG. Retrieved from https://www.eenews.net/assets/2011/08/04/document_cw_01.pdf

Kriegler, E., Edenhofer, O., Reuster, L., Luderer, G., & Klein, D. (2013). Is atmospheric carbon dioxide removal a game changer for climate change mitigation? Climatic Change, 118(1), 45–57. https://doi.org/10.1007/s10584-012-0681-4

Lawrence Berkely National Laboratory. (2022). Utility-Scale Solar. https://emp.lbl.gov/utility-scale-solar

Lazard (2021). Lazard’s Levelized Cost of Energy Analysis – Version 15.0. https://www.lazard.com/media/sptlfats/lazards-levelized-cost-of-energy-version-150-vf.pdf

Lenton, T. M. (2010). The potential for land-based biological CO2 removal to lower future atmospheric CO2 concentration. Carbon Management, 1(1), 145–160. https://doi.org/10.4155/cmt.10.12

Maddison, A. (2008). Historical Statistics for the World Economy: 1-2006 AD. Conference Board and Groningen Growth and Development Centre, Total Economy Database, www.ggdc.net/MADDISON/oriindex.htm.

Massachusetts Institute of Technology (MIT). (2012). Joint Program Energy and Climate Outlook. http://globalchange.mit.edu/Outlook2012.

McDonald, A., Schrattenholzer, L. (2001). Learning rates for energy technologies. Energy Policy 29, 255-261.

Mclaren, D. (2012). A comparative global assessment of potential negative emissions technologies. Process Safety and Environmental Protection, 90, 489–500. https://doi.org/10.1016/j.psep.2012.10.005

Meinshausen, M., S. Smith et al. (2011). "The RCP GHG concentrations and their extension from 1765 to 2300", DOI 10.1007/s10584-011-0156-z, Climatic Change.

Meinshausen, M., N. Meinshausen, W. Hare, S.C.B. Raper, K. Frieler, R. Knutti, D.J. Frame, and M.R. Allen. (2009). Greenhouse-gas emission targets for limiting global warming to 20C. Nature. 458: 1158-1163.

Miller, R.L., G.A. Schmidt, L.S. Nazarenko, et al. (2015). CMIP5 historical simulations (1850-2012) with GISS ModelE2. J. Adv. Model. Earth Syst., 6, no. 2, 441-477, doi:10.1002/2013MS000266.

Morice, C.P., J.J. Kennedy, N.A. Rayner, J.P. Winn, E. Hogan, R.E. Killick, R.J.H. Dunn, T.J. Osborn, P.D. Jones and I.R. Simpson (in press) An updated assessment of near-surface temperature change from 1850: the HadCRUT5 dataset. Journal of Geophysical Research (Atmospheres) doi:10.1029/2019JD032361 (supporting information).

National Oceanic & Atmospheric Administration (NOAA). (2024). Lan, X., K.W. Thoning, and E.J. Dlugokencky: Trends in globally-averaged CO2, CH4, N2O, and SF6 determined from NOAA Global Monitoring Laboratory measurements. 2024-02, https://gml.noaa.gov/ccgg/trends/.

National Research Council. (2015). Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration. Retrieved from https://www.nap.edu/catalog/18805/climate-intervention-carbon-dioxide-removal-and-reliable-sequestration

Nordhaus W. D. (1994). Managing the commons: The economics of climate change. MIT Press.

Nordhaus W. D. (2000). Warming the World: Economic Models of Global Warming. MIT Press.

Nordhaus, W. D. (2007). Accompanying notes and documentation on development of DICE-2007 model: Notes on DICE-2007. v8 of September 21, 2007. N. Hav. CT Yale Univ.

Nordhaus, W. & Sztorc, P. (2013). DICE 2013R: Introduction and user’s manual.

Our World in Data. Primary energy and electricity generated by source. Retrieved September 2020. https://ourworldindata.org/grapher/global-primary-energy and https://ourworldindata.org/grapher/electricity-prod-source-stacked?tab=table&year=latest&time=earliest..latest.

Oeschger, Siegenthaler et al. (1975). A box diffusion model to study the carbon dioxide exchange in nature. Tellus, 27: 168-192. https://doi.org/10.1111/j.2153-3490.1975.tb01671.x

Ricke, K., Drouet, L., Caldeira, K. & Tavoni, M. (2018). Country-level social cost of carbon. Nat. Clim. Change 8, 895–900.

Rotmans, J. (1990). IMAGE, An integrated model to assess the greenhouse effect. Kluwer Academic Publishers.

Royal Society Report. (2018). Greenhouse Gas Removal. https://royalsociety.org/~/media/policy/projects/greenhouse-gas-removal/royal-society-greenhouse-gas-removal-report-2018.pdf.

Sand, M., Skeie, R.B., Sandstad, M (2023). A multi-model assessment of the Global Warming Potential of hydrogen. Commun Earth Environ 4, 203. https://doi.org/10.1038/s43247-023-00857-8.

Shaner, M., Davis, S.J., Lewis, N.S., and Caldeira, K., (2018). Geophysical constraints on the reliability of solar and wind power in the United States. Energy & Environmental Science. Issue 4.

Shell. (2018). Sky Scenario. https://www.shell.com/energy-and-innovation/the-energy-future/scenarios/shell-scenario-sky.html

Schneider, S. H., and Thompson, S. L. (1981). Atmospheric CO2 and climate: Importance of the transient response, J. Geophys. Res., 86( C4), 3135– 3147, https://doi.org/10.1029/JC086iC04p03135.

Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Yongsung, C. (2016). Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 6(1), 42–50. https://doi.org/10.1038/nclimate2870

Socolow, R. H. and S. H. Lam (2007). Good Enough Tools for Global Warming Policy Making. Philosophical Transactions v365 n1853. https://www.jstor.org/stable/25190479

Solomon, A.A., Child, M., Caldera, U. Breyer, C. 2017. How much energy storage is needed to incorporate very large intermittent renewables? Energy Procedia, Volume 135, Pages 283-293, https://doi.org/10.1016/j.egypro.2017.09.520. (https://www.sciencedirect.com/science/article/pii/S1876610217346258).

SSP Database (Shared Socioeconomic Pathways) (2018). Version 2.0. Available at: https://tntcat.iiasa.ac.at/SspDb.

Taconet, N., Méjean, A. & Guivarch, C. (2020). Influence of climate change impacts and mitigation costs on inequality between countries. Clim. Change 1–20.

Tol, R. S. (2009). The economic effects of climate change. J. Econ. Perspect. 23, 29–51.

US EIA. (2019). Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2020. https://www.eia.gov/outlooks/aeo/pdf/electricity_generation.pdf.

US EIA. (2019). Electricity prices reflect rising delivery costs, declining power production costs. https://www.eia.gov/todayinenergy/detail.php?id=32812.

US EIA. (2016). Short-Term Energy Outlook. Short-Term Energy Outlook Real and Nominal Prices. December 2016.

US EIA. (2011). Annual Energy Outlook. DOE/EIA-0383. AEO2011 National Energy Modeling System. www.eia.gov/aeo.

US EIA. (2009). Annual Energy Review. Historical energy for transition comparisons.

United Nations, Department of Economic and Social Affairs, Population Division (2022). World Population Prospects: The 2022 Revision.

UNEP. (2016). Kigali Amendment Fact Sheet. https://multimedia.3m.com/mws/media/1365924O/unep-fact-sheet-kigali-amendment-to-mp.pdf

van Vuuren, D. P., Deetman, S., van Vliet, J., van den Berg, M., van Ruijven, B. J., & Koelbl, B. (2013). The role of negative CO2 emissions for reaching 2 °C--insights from integrated assessment modelling. Climatic Change; Dordrecht, 118(1), 15–27. https://doi.org/http://dx.doi.org.libproxy.tulane.edu:2048/10.1007/s10584-012-0680-5

Vermeer, M. and S. Rahmstorf. (2009). Global sea level linked to global temperature. Proc of the Nat Acad of Sci. 106(51):21527-21532. www.pnas.org/cgi/doi/10.1073/pnas.0907765106.

Weagle, C. L. et al. (2018). Global Sources of Fine Particulate Matter: Interpretation of PM2.5 Chemical Composition Observed by SPARTAN using a Global Chemical Transport Model. Environ Sci Technol. https://doi.org/10.1021/acs.est.8b01658.

Weitzman, M. L. (2012). GHG targets as insurance against catastrophic climate damages. J. Public Econ. Theory 14, 221–244.

Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010).Sustainable biochar to mitigate global climate change. Nature Communications, 1, 1. https://doi.org/10.1038/ncomms1053

World Bank. (2023). World Development Indicators, 1960-2022. https://data.worldbank.org/indicator/NY.GDP.MKTP.PP.KD. Constant $ 2017 US (PPP).

Wullschleger, S.D., W.M. Post, and A.W. King. (1995). On the potential for a CO2 fertilisation effect in forests: Estimates of the biotic growth factors based on 58 controlled exposure studies. In: Biotic feedbacks in the global climate system: Will the warming feed the warming?, ed. G.M. Woodwell and F.T. Mackenzie, 85–107. Oxford University Press, U.K.

Xu et al. (2021). Changes in global terrestrial live biomass over the 21st century. Science Advances v7 n27. https://www.science.org/doi/10.1126/sciadv.abe9829

Search Results

Your search did not match any documents.